期刊文献+

椭圆偏微分方程解的凸性研究综述 被引量:1

Survey on Convexity of Solutions of Elliptic Partial Differential Equations
原文传递
导出
摘要 综述介绍了椭圆偏微分方程解的凸性研究的方法、研究现状.用凹性极大值原理来处理解的凸性问题是一种宏观的方法,常秩定理则是从微观的角度来处理解的凸性问题,由于常秩定理是强极值原理,因而能够得到解的严格凸性. Main methods and current research status of convexity of solutions of elliptic partial differential equations are outlined.From the point of macroscopic view,the method is using concavity maximum principle.From the point of microcosmic view,the method is using constant rank theorem.Because constant rank theorem is strong maximum principle,strictly convexity of solutions can be obtained.
作者 苏久亮
出处 《浙江树人大学学报(自然科学版)》 2009年第2期42-46,共5页 Journal of Zhejiang Shuren University(Acta Scientiarum Naturalium)
关键词 解的凸性 凹性极大值原理 常秩定理 椭圆偏微分方程 convexity of solutions concavity maximum principle constant rank theorem elliptic partial differential equation
  • 相关文献

参考文献3

  • 1Pengfei Guan,Xi-Nan Ma.The Christoffel-Minkowski problem I: Convexity of solutions of a Hessian equation[J].Inventiones mathematicae.2003(3)
  • 2Nicholas J. Korevaar,John L. Lewis.Convex solutions of certain elliptic equations have constant rank hessians[J].Archive for Rational Mechanics and Analysis.1987(1)
  • 3L. G. Makar-Limanov.Solution of Dirichlet’s problem for the equation Δu =?1 in a convex region[J].Mathematical Notes of the Academy of Sciences of the USSR.1971(1)

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部