摘要
本文讨论了一个 Bernstein 型插值算子的逼近阶,所得结果优于 O.Kis 的结果.
Let P■(x)be the Jacobi polynomials,for Q<sub>n</sub>(x)=■,we consider an interpolation operator of Bern- stein type L<sub>n</sub>(f,x),that based on zeros of(1-x)Q,(x) In this note we prove the following theorem. Theorem.If f(x)∈C<sub>[-1;1]</sub>,then ■ where the“O”is independent on f,x and n.
作者
郁定国
Yu Dingguo (Department of Mathematics)