期刊文献+

Compressed Data Cube for Approximate OLAP Query Processing 被引量:3

原文传递
导出
摘要 Approximate query processing has emerged as an approach to dealing with thehuge data volume and complex queries in the environment of data warehouse. In this paper,we present a novel method that provides approximate answers to OLAP queries. Our methodis based on building a compressed (approximate) data cube by a clustering technique and usingthis compressed data cube to provide answers to queries directly, so it improves the performanceof the queries. We also provide the algorithm of the OLAP queries and the confidence intervalsof query results. An extensive experimental study with the OLAP council benchmark showsthe effectiveness and scalability of our cluster-based approach compared to sampling.
作者 冯玉 王珊
机构地区 SchoolofInformation
出处 《Journal of Computer Science & Technology》 SCIE EI CSCD 2002年第5期625-635,共11页 计算机科学技术学报(英文版)
基金 国家自然科学基金,国家重点基础研究发展计划(973计划)
  • 相关文献

参考文献11

  • 1Gray J, Bosworth A, Layman A, Pirahesh H. DataCube: A relational aggragation operator generalizing Group-By,Cross-Tab, and SubTotals. In Proc. 12th ICDE, Neworleans, Louisiana, USA, 1996, pp.152-159.
  • 2Sarawagi S, Stonebraker M. Efficient organization of large multidimensional arrays, in Proc of ICDE, Houston,Texas, USA, 1994, pp.328-336.
  • 3Han J, Kambr M. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers, 2000.
  • 4The OLAP Council. The OLAP benchmark, http://www.olapcouncil.org
  • 5Barbara D, DuMouchel W, Faloutsos C et al. The New Jersey data reduction report. IEEE Data Engineering Bulletin, 1997, 20(4): 3-45.
  • 6Acharya S, Gibbons P B, Poosala V, Ramaswamy S. Join Synopses for approximate query answering. In SIGMOD'1999, Philadelphia, Pennsylvania, USA, 1999, pp.275-286.
  • 7Vitter J S, Wang M. Approximate computation of multidimensional aggregates of sparse data using wavelets. In SIGMOD'1999, Philadelphia, Pennsylvania, USA, 1999, pp.193-204.
  • 8Shanmugasundaram J, Fayyad U, Bradley P S. Compressed Data Cubes for OLAP Aggregate Query Approximation on Continuous Dimensions. In KDD'1999, San Diego, California, USA, 1999, pp.223-232.
  • 9Jagadish H V, Madar J, Ng R T. Semantic Compression and Pattern Extraction with Fascicles. In VLDB'1999,Edinburgh, Scotland, 1999, pp.186-198.
  • 10Babu S, Garofalakis M, Rastogi R. SPARTAN: A model-based semantic compression system for massive data tables.In SIGMOD'2001, Santa Barbara, California, USA, 2001, pp.283-294.

同被引文献19

  • 1Markl Volker,Ramsak Frank,Bayer Rudolf. Improving OLAP performance by multidimensional hierarchical clustering[C]. Proceedings of the International Database Engineering and Applications Symposium.1999:165-177.
  • 2Codd E F. Providing OLAP(on-line analytical processing) to user-analysts:an IT mandate[R]. Technical Report. E F Codd and Associates, 1993.
  • 3Zhao Y H, Deshpande P M, Naughton J F. An array-based algorithm for simultaneous multidimensional aggregates [J].ACM SIGMOD Record, 1997,26 (2):159-170.
  • 4Mumick I S, Quass D, Mumick B S. Maintenance of data cubes and summary tables in a warehouse [J]. ACM SIGMOD Record,1997,26(2): 100-111.
  • 5Ho C, Agrawal R, Megiddo N, Srikant R. Range queries in OLAP data cubes[J]. ACM SIGMOD Record, 1997,26 (2):73-88.
  • 6Geffner S, Agrawal D, Abbadi A E1, Smith T. Relative prefix sums: An efficient approach for querying dynamic OLAP data cubes[A]. In:Kitsuregawa M, ed. Proceedings of the 15th International Conference on Data Engineering[C]. New Orleans:IEEE Computer Society, 1999,328-335.
  • 7Geffner S, Agrawal D, Abbadi A E1. The dynamic data cubes [A]. In: Zaniolo C, ed. Proceedings of 7th International Conference on Extending Database Technology [C]. Heidelberg:Springer, 2000, 237-253.
  • 8Liang W, Wang H, Orlowska M E. Range queries in dynamic OLAP data cubes[J]. Data & Knowledge Engineering , 2000,34(1):21-38.
  • 9Riedewald M, Agrawal D, Abbadi A El. Fiexible data cubes for online aggregation[A]. In: Bussche J V, ed. Proceedings of the 8th International Conference on Database Theory [C]. Heidelberg:Springer, 2001, 159-173.
  • 10Wang W, Lu H J, Feng J L et al. Condensed cube: an effective approach to reducing data cube size[A]. In: Jose S, Agrawal C R, Dittrich K, eds. Proc. of the 18th International Conference on Data Engineering[C]. Los Alamitos :IEEE Computer Society Press, 2002, 155-165.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部