期刊文献+

低热高压法制作PLGA支架的三维结构研究 被引量:5

Analysis of three-dimensional microstructure of poly (lactide-co-glycolide) scaffolds made by mild heating under high pressure
下载PDF
导出
摘要 目的制作不含有机溶剂、三维结构良好的聚丙交酯-乙交酯共聚物(PLGA)支架,使之符合组织工程骨修复的需要,探讨一种新型聚合物支架制作方法。方法将聚合物与氯化钠粉碎后,采用低热高压法制作PLGA泡沫结构支架,经密度法、氯化钠法测定其空隙率、开孔率;扫描电镜观察表面和内部结构、测定孔径。结果利用此种方法制作的PLGA支架,空隙率达到90.0%和92.5%、孔径在200-250μm之间、开孔率为98.0%以上(P<0.01),平均氯化钠沥净时间为12~13h。结论使用低热高压法制作的组织工程支架,三维结构稳定,各项参数可控制;根据模具的大小可以制作不同体积的支架;依据盐的颗粒粒度与数量控制支架的孔径和空隙率,在制作过程中不使用有机溶剂,减少了有机溶剂残留可能引起的对细胞的毒性。使用这种方法要对聚合物与氯化钠颗粒进行充分混合。 Objective To develop a poly(lactide-co-glycolide)(PLGA) copolymer scaffold with good three-dimensional mi-crostructure and free of organic solvent, which can be used in bone repairing for tissue engineering, and to explore a novel method for developing polymeric scaffolds. Methods The polymer and sodium chloride were ground to powder and mixed in 2 different proportions as the materials for preparing the scaffolds by mild heating under high pressure. The porosity and the ratio of open pores in the product were analyzed in light of its density and by sodium chloride approaches, with the pore size, surface and internal structures examined under scanning electron microscope (SEM). Results The PLGA scaffolds made by this method had porosity of 90% and 92.5% respectively, their pore size ranging from 200 to 250 jun with the ratio of open pores exceeding 98% (f<0.01). The average sodium chloride leaching time was 12 to 13 h. Conclusions The scaffolds made in this way possess stable three-dimensional microstructure with controllable parameters and without cytotoxic effects caused by organic solvent.
出处 《第一军医大学学报》 CSCD 北大核心 2002年第9期776-778,共3页 Journal of First Military Medical University
基金 国家自然科学基金高技术探索项目(30170953) 广东省重点科技攻关基金(2KM0505S)
关键词 低热高压法 PLGA 聚丙交酯-乙交酯共聚合物 支架 三维结构 组织工程 poly(lactide-co-glycolide) scaffolds three-dimension microstructure tissue engineering
  • 相关文献

参考文献7

  • 1[1]Murphy WL, Mooney DJ. Controlled delivery of inductive proteins,plasmid DNA and cells from tissue engineering matrices [J]. J Periodont Res, 1999, 34(2): 413-9.
  • 2[2]Mooney DJ, Baldwin DF, Sub NP, et al. Novel approach to fabricate porous sponges ofpoly (D,L-lactic-co-glycolic acid) without the use of organic solvents[J]. Biomaterials, 1996, 17(6): 1417-22.
  • 3[3]Nam YS, Park TG. Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation[J]. J Biomed Mater Res,1999, 47(1): 8-17.
  • 4[4]Sheridan MH, Shea ID, Peters MC, et al. Bioabsorbable polymer scaffolds for tissue engineering capable of sustained growth factor delivery[J]. J Controll Rel, 2000, 64(1): 91-102.
  • 5[5]Peter SJ, Miller MJ, Yasko AW, et al. Polymer concepts in tissue enginering[J]. J Biomed Mater Res (Appl Biomater), 1998, 43(2):422-7.
  • 6[6]Tsuruga E, Takita H, Itoh H, et al. Pore suze ofporous hydroxyaratite as the cell-substratum controls BMP-induced osteogenesis [J]. J Biochem Tokyo, 1997, 121(2): 317-24.
  • 7[7]Putnam AJ, Mooney DJ. Tissue engineering using synthetic extracellular matrices[J]. Nat Med, 1996, 2(4): 824-6.

同被引文献30

  • 1孙浩,郭超,张娟,董寅生,尹立红,林萍华,浦跃朴.骨组织工程用PLGA多孔支架的制备及细胞毒性研究[J].化工时刊,2005,19(10):1-4. 被引量:11
  • 2Mikos AG Thorsen AJ,Czerwonka LA.,et al.Polymer,1994(35):1 068~1 077.
  • 3YS.Dong,C. Guo,PH.Lin.,et al, Key Engineering Materials,Vols.288-289(2005) pp:381~384.
  • 4Chen G,Ushida T,TateishiT,Materials Scienceand Engineering C,2001,17(1-2):63~69.
  • 5Nam YS,Yoon JJ,Park TG.J Biomed Mater Res,2000,53(1):1~7.
  • 6Mooney DJ,Mazzoni CL,Breuer C.,et al, Biomaterials,1996,17(2):115~124.
  • 7Harris LD,Kim BS,Mooney DJ. J Biomed Mater Res,1998,42(3):396~402
  • 8Whang K,Thomas CH,Healy KE.,et al.Polymer,1995,36(4):837~842.
  • 9Park A,Wu B,Griffith LG J Biomater Sci Polym Ed 1998,9:89.
  • 10Nam YS,Park TG,J Bio Med Mater Res,1999,47(1):8~17.

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部