期刊文献+

Boussinesq型方程对三维非线性波传播的数值模拟 被引量:4

Numerical Simulation of Three-dimensional Non-linear Wave Propagation Applying Boussinesq Type Equations
下载PDF
导出
摘要 该文建立了适宜于相对水深和复杂地形的非线性波传播的三维数学模型 ,模型包括任意水深点流场与波动净压力场的求解。在均匀水深条件下就不同波高、水深及波长的组合对推进波的波面、流速场和波动净压力场进行了全面数值模拟。将计算结果与解析解或物模实验结果进行对比 ,表明模型能较好地模拟各种组合下波浪传播的波动特征以及复杂地形上非线性波的传播。 The three-dimensional models of non-linear wave propagation are presented. The models, which also provide the calculation of 3-D wave particle velocity and wave pressure, are suitable to the complicated topography, whose relative depth ( D/L , ratio of water depth to wavelength ) is equal to or smaller than 1. For the case of combinations of different incident wave heights, wave lengths and water depths, the present models can give good results by comparing with the linear wave theoretical solutions and the non-linear ones. The computation results of the present models are compared with those of the typical hydraulic model of experiment of wave propagation on a submerged shoal with concentric circular contours. The conclusion shows that the results from the present models are consistent with those from the physical model, the numerical simulation models in this paper can effectively simulate the non-linear wave propagation in the complicated coastal area.
出处 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第3期88-94,共7页 Journal of East China Normal University(Natural Science)
关键词 BOUSSINESQ型方程 三维数学模型 流场 波动净压力场 复杂地形 非线性波传播 波浪传播理论 Boussinesq type equations 3-D mathematical models velocity field and wave pressure field complicated topography
  • 引文网络
  • 相关文献

参考文献2

二级参考文献17

  • 1Hong Guangwen(Received December 20 1990,acepted June 15, 1991).Theoretical solution for wave diffraction by wedge or corner with arbitrary reflection characteristics[J].Acta Oceanologica Sinica,1992,11(2):287-303. 被引量:1
  • 2Orlanski I.A simple boundary condition for unbounded hyperbolic flows,1976.
  • 3AA.
  • 4Nwogu,O.Alternative Form of Boussinesq Equations for Nearshore Wave Propagation. J.of Waterway,Port,Coastal and Ocean Eng . 1993
  • 5Tanimoto,K.,K.Kobune.Computation of Waves in a Harbor Basin by a Numerical Wave Analysis Method. Proc.of 22nd Japanese Conf.on Coast.Eng . 1975
  • 6Beji,S.,Nadaoka,K.A formal derivation and numerical modeling of the improved Boussinesq equations for varying depth. Coastal Engineering . 1996
  • 7Enquist.B.and A.Majda,1977.Absorbing Boundary Conditions for the Numerical Simulation of Waves,Math. Company Van .
  • 8SchafferHA,MadsenPA.FurtherenhancementsofBoussinesq_typeequations. CoastalEng . 1995
  • 9Larsen J,Dancy H.Open boundaries in short-wave simulations——a newapproach. Coastal Engineering . 1983
  • 10MADSEN P A,MURRAY R,S?RENSEN O R.A newform of the Boussinesq equations with improved lineardispersion characteristics. Coastal Engineering . 1991

共引文献32

同被引文献38

引证文献4

二级引证文献15

;
使用帮助 返回顶部