期刊文献+

非线性强阻尼波动方程吸引子的正则性及近似惯性流形 被引量:5

Regularity of the Attractor and Approximate Inertial Manifold for Strongly Damped Nonlinear Wave Equations
下载PDF
导出
摘要 研究了非线性强阻尼波动方程utt=αuxxt+σ(ux) x-f(u) +g(x)的初边值问题 ,利用线性主算子在相空间生成的解析半群的性质 ,证明了解的光滑性 ,得到了吸引子的正则性 ,构造了近似惯性流形 ,并证明了该方程的任意解轨道在长时间后进入该流形的小邻域中 . In this paper, the initial boundary value problem of the strongly damped nonlinear wave equation u tt =αu xxt +σ(u x) x-f(u)+g(x) is considered. By using the analylic property of the semigroup generated by the principal operator of the equation in the phase space, the authors prove the smoothing property of the solution, the regularity of the attractor is obtained and approximate inertial manifolds of the equation are constructed. It is proved that arbitrary trajectory of such equation goes into a small neighbourhood of such manifold after large time.
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 2002年第5期459-463,共5页 Journal of Sichuan Normal University(Natural Science)
基金 四川省教育厅重点科研基金资助项目
关键词 非线性强阻尼波动方程 吸引子 正则性 近似惯性流形 初边值问题 线性主算子 Strongly damped nonlinear wave equation Regularity of attractor Approximate inertial manifold
  • 相关文献

参考文献13

  • 1Chang Q, Guo B. Finite difference solution for nonlinear wave equation utt-uxx=σ(ux)x+uxxt-f(u)[J]. J Comp Math,1984,2(4):297~304.
  • 2Greenberg J M. On the existence, uniqueness and stability of solutions of the equation Xtt=E(Xx)Xxx+λXtxx[J]. J Math Anal Appl,1969,25:575~591.
  • 3Massatt P. Limiting behavior of strongly damped nonlinear wave equations[J]. J Diff Eqs,1983,48:334~349.
  • 4Berkaliev Z B. An attractor of a nonlinear evolution equation of viscoelasticity[J]. Moscow Univ Math Bull,1985,40(5):61~63.
  • 5Ghidaglia J M, Teman R. Attractors for damped nonlinear hyperbolic equations[J]. J Math Pures Appl,1987,66:273~319.
  • 6Chueshov I D. On a construction of approximate inertial manifolds for second order in time evolution equations[J]. Nonlinear Anal,1996,26(5):1007~1021.
  • 7Debussche A, Marion M. On the construction of families of approximate inertial manifolds[J]. J Diff Eqs,1992.100:173~201.
  • 8李用声,张卫国.强阻尼波动方程吸引子的正则性及其逼近[J].数学物理学报(A辑),2000,20(3):342-350. 被引量:1
  • 9罗宏,蒲志林,陈光淦.具有快速增长非线性项的Cahn-Hilliard方程的近似惯性流形[J].四川师范大学学报(自然科学版),2002,25(3):248-251. 被引量:9
  • 10罗宏,蒲志林,陈光淦.非线性强阻尼波动方程吸引子的正则性及近似惯性流形[J].四川师范大学学报(自然科学版),2002,25(5):459-463. 被引量:5

二级参考文献26

  • 1王碧祥,王守田.Cahn─Hilliard方程的近似惯性流形[J].兰州大学学报(自然科学版),1994,30(3):1-5. 被引量:2
  • 2Chen F X,J Diff Eqs,1998年,147卷,231页
  • 3Sell G R,J Diff Eqs,1992年,96卷,203页
  • 4Chow S N,J Diff Eqs,1988年,74卷,285页
  • 5Chang Q S,J Comput Math,1984年,12卷,4期,297页
  • 6Pao C V,J Math Anal Appl,1975年,52卷,105页
  • 7Foias C,Sell G R,Teman R.Varites inertills des equations differentielles dissipatives[J].C R Acad Sci Paris Ser 1 Math,1985,301:139~142.
  • 8Foias C,Manley O,Temam R.Sur I'interaction des petits et grands tourillions dans less ecoulements turblents[J].C R Acad Sci Paris Ser I,1987,305:497~500.
  • 9Jolly M S,Kevrekidis I G,Titi E S.Approximate inertial manifolds for the Kuramoto-Sivashinsky equation:analysis and computation[J].Phys D,1990,44:38~60.
  • 10Titi E S.On approximate inertial manifolds to the Navier-Stokes equations[J].J Math Anal Appl,1990,49(2):540~556.

共引文献8

同被引文献46

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部