期刊文献+

解一类似变分不等式问题的预解式技术与辅助原理技术 被引量:5

Resolvent Operator Technique and Auxiliary Principle for Solving a Class of Variational-like Inequaties
下载PDF
导出
摘要 在研究变分不等式问题 ,特别是解的逼近时 ,通常要借助于真凸下半连续泛函的次微分算子的预解算子 ,运用Banach不动点定理逼近变分不等式问题的解 .而针对似变分不等式问题 ,方法之一是构造一系列辅助问题来逼近问题的解———即辅助原理技术 .另一种新颖的方法是借助于 η 次微分的概念 ,构造 η 次微分算子的预解式来逼近问题的解 .运用 η 次微分算子的预解式技术和辅助原理技术给出了一类似变分不等式问题解的存在性和唯一性 . When we study variational inequalities, in particular approximating to the solution, we often resort to resolvent operator of subdifferential operator of proper convex lower semi continuous function, using Banach's theorems on fired points, to approximate to the solution of variational inequalities. As for variational like inequalities, one method called auxiliary principle is to construct a series of auxiliary problems to approximate to the original solution. Another new method is to construct resolvent operator by using the concept of η subdifferential, resolvent operator technique and auxiliary principle technique, we present the existence and uniqueness of the solution of a class of variational like inequalities.
作者 夏锦 苗放
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 2002年第5期484-486,共3页 Journal of Sichuan Normal University(Natural Science)
关键词 似变分不等式 Η-次微分 预解式技术 辅助原理技术 存在性 唯一性 预解算子 不动点定理 Variational like inquality η subdifferential Resolvent opesolvent operator terator technique Auxiliaty principle Existence and uniqueness
  • 相关文献

参考文献6

  • 1Ding X P. Existence and algorithm of solution for generalized mixed implicit quasi-variational inequalities[J]. Appl Math Comput,2000,113:67~80.
  • 2Huang N J, Deng C X. Auxiliary principle and iterative algorithms for generalited setvalued strongly nolinear mixed variational-like inequalities[J]. J Math Anal Appl,2001,256:345~359.
  • 3Ding X P, Luo C L. Perturbed proximal point algorithms for generalized quasi-variational-like inclusions[J]. J Comput Appl Math,2000,210:153~165.
  • 4Lee C H. Ansari Q H, Yao J C. A perturbed algorithm for strongly nonlinear variational-like inclusions[J]. Bull Austral Math Soc,2000,62:417~426.
  • 5Yang X Q, Craven B D. Necessary optimality conditions with a modified subdiffeential[J]. Optimization,1991,22:387~400.
  • 6Zhou J X, Cheng G. Diagonal convexity conditions for problems in convex analysis and quasivariational inequality[J]. J Math Anal Appl,1988,132:213~225.

同被引文献25

  • 1[1]N.J.Huang,M.Y.Tan.Sensitivity Analysis for a New System of Generalized nonlinear mixed quasi-variational Inclusions[J].Appl.Math.Let.,2004,17:345-352.
  • 2[2]N.J.Huang et al.Generalized nonlinear mixed quasivariational inequalities[J].Comput.Math.Applic.2000,40:205-215.
  • 3[3]Huang N J,Deng C X.Auxiliary principle and iterative algorithms for generalized set -valued strongly nonlinear mixed vari ational-like inequalities[J].J.Math.Anal.,2001,256:345-359.
  • 4[4]Chen X F,Deng C X.New approximation algorithms for a system of generalized nonlinear variational inequalities[J].四川大学学报(自然科学版),2001,6:813-817.
  • 5[3]Ding X P,LuoC L.Perturbed proximal point algorithms for generalized quasi -variational -like inclusions[J].J.comput Appl.Math.,2000,210:153-165.
  • 6[5]N.J.Huang and Y.P.Fang.A new class of general variational inclusions involving maximal monotone mappings[J].Publ.Math.Debrecen.2003,62:83-98.
  • 7[6]S.B.Nadler,Jr.Multi -valued contraction mappings[J].Pacific J.Math.1969,38:475 -488.
  • 8[7]N.J.Huang Completely generalized nonlinear variational inclusions for fuzzy mappings[J].Czechoslovak.Mathematical.Journal,1999,49 (124):767-777.
  • 9Ding X P.Existence and Algorithm of Solution for Generalized Mixed Implicit Quasi-Variational Inequalities[J].Appl.Math.Comput.,2000,113:67-80.
  • 10Huang N J,Deng C X.Auxiliary Principle and Iterative Algorithms for Generalized Set-Valued Strongly Nonlinear Mixed Variational-Like Inequalities[J].J.Math.Anal.Appl.,2001,256:345-359.

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部