摘要
本文介绍和研究了Banach空间中的一类带有Φ -强增生条件的集值变分包含解的存在性与逼近问题 .通过推广参考文献 [6 ]中的 η -次微分的概念 ,利用Michael的连续选择定理以及单值情形的相应结果 ,建立了集值变分包解的存在性定理 ,以及参考文献 [7]中的带有混合误差的Ishikawa迭代序列强收敛到集值变分包含解的一个充要条件 .所得结果推广和改进了参考文献 [1],[3],[5 ],[9],[10
In this paper,we introduce and study the existence and approximation problems of solutions to a class set-valued variational inclusions with Φ-strongly accretive mappings in Banach spaces.By generalizing the conception of η-subdifferential in and using Michael's continuous selection theorem and the corresponding results of single-value variational inclusions,we establish the existence theorem of solutions,and obtain a necessary and sufficient condition on which the Ishikawa iterative sequence with mixed errors converges strongly to the solutions of variational inclusions.These results generalize and improve corresponding results in ,,,,.
出处
《南昌大学学报(工科版)》
CAS
2002年第2期54-58,共5页
Journal of Nanchang University(Engineering & Technology)