摘要
弹—塑性问题是结构力学研究中最常见、最重要的一类问题 .有限元方法具有网格剖分灵活 ,适用区域广泛 ,易于处理第二和第三类边值问题 ,计算精度高等诸多优点 ,已成为现代数值求解各类偏微分方程的重要方法之一 .对二维弹—塑性问题 ,利用质量集中法 ,构造了一个全离散有限元计算格式 ,并证明了在适当的条件下 。
Elastic plastic problems are the most common and important equations in structural mechanics. The finite element method has many advantages: it is divided flexibly for mesh, suitable for many kinds of domain, easy to solve the second and third boundary value problems and to calculate higher accuracy. It has become one of important methods for numerical solving many kinds of partial differential equations. A fully discrete finite element scheme is formulated to two dimensional elastic plastic problems by using lumped mass method. The convergence of this scheme is proved under suitable conditions.
出处
《山东大学学报(工学版)》
CAS
2002年第3期201-205,共5页
Journal of Shandong University(Engineering Science)
基金
国家自然科学基金资助项目 (10 0 710 4 4 )