期刊文献+

二维弹—塑性问题的一个质量集中有限元格式的收敛性证明 被引量:1

Convergence of a finite element scheme for two-dimensional elastic-plastic problems
下载PDF
导出
摘要 弹—塑性问题是结构力学研究中最常见、最重要的一类问题 .有限元方法具有网格剖分灵活 ,适用区域广泛 ,易于处理第二和第三类边值问题 ,计算精度高等诸多优点 ,已成为现代数值求解各类偏微分方程的重要方法之一 .对二维弹—塑性问题 ,利用质量集中法 ,构造了一个全离散有限元计算格式 ,并证明了在适当的条件下 。 Elastic plastic problems are the most common and important equations in structural mechanics. The finite element method has many advantages: it is divided flexibly for mesh, suitable for many kinds of domain, easy to solve the second and third boundary value problems and to calculate higher accuracy. It has become one of important methods for numerical solving many kinds of partial differential equations. A fully discrete finite element scheme is formulated to two dimensional elastic plastic problems by using lumped mass method. The convergence of this scheme is proved under suitable conditions.
作者 孙同军
出处 《山东大学学报(工学版)》 CAS 2002年第3期201-205,共5页 Journal of Shandong University(Engineering Science)
基金 国家自然科学基金资助项目 (10 0 710 4 4 )
关键词 二维弹-塑性问题 质量集中 有限元格式 收敛性 结构力学 数值求解 偏微分方程 Finite element method Elastic plastic problems Convergence.
  • 相关文献

参考文献7

  • 1Fujii Hiroshi. Finite element Galerkin method for mixed initial-boundary value problems in elasticity theory[C]. USA: Center For Numerical Analysis, The University of Texas at Austin, Oct. 1971, CNA-34.
  • 2Johnson C. On finite element methods for plasticity problems[J].Numer.Anal,1976,26:79~84.
  • 3Miyoshi T. Foundations of the Numerical Analysis of plasticity[M]. North-Holland Mathematics Studies 107, Amsterdam: North-Holland publishing company, 1985.
  • 4孙同军,马克颖,三好哲彦.对二维弹—塑性问题的一个有限元格式的稳定性证明[J].山东大学学报(理学版),2001,36(2):127-133. 被引量:1
  • 5Miyoshi T. Numerical stability in dynamic elastic-plastic problems[J]. Analyse Numerique ,1980, 14: 175~188.
  • 6Miyoshi T. A consistent explicit scheme for dynamic plasticity problems[J]. Computational Mechanics, 1991, 4: 442~447.
  • 7Ciarlet P.C. Finite element method for elliptic problems[M]. Amsterdam: North-Holland publishing company, 1978.

二级参考文献1

  • 1Claes Johnson. On finite element methods for plasticity problems[J] 1976,Numerische Mathematik(1):79~84

同被引文献3

  • 1石钟慈.纯粹数学与应用数学[M].北京:科学出版社,1981..
  • 2VICTOR.Vibrational impact of high—speed trains and effect of track dynamics[J].Journal of Acoustical Society of America,1996,100(5):3121—3129.
  • 3MSKOTO TANABE.Simulation and visualization of high—speed shinkansen train on the railway structure[J]. Japan Journal of Industrial and Applied Mathematics,2000,17(2):309—320.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部