摘要
本文证明了,q=p_1p_2…p_τ=10β+3型奇数,p_1,p_2,…,p_τ是不同素数,n,x,s,α,r为正整数时,方程sum from k=o to n(x-2~s5~αq^K)~r=sum from k=1 to n(x+2~S5~αq^K)~r,仅有正整数解r=1,x=2~s5~αqn(n+1)和r=2,x=2^(s+1)5~αqn(n+1).
In this paper, we proved following results: let q= p1p2 pi= 10B+3 be odd, p1, p2, , pi, be distinct prime, n, x, e , a, r, be positive integer,
the equation
has no positive integer solutions,
出处
《重庆师范学院学报(自然科学版)》
1991年第4期41-48,共8页
Journal of Chongqing Normal University(Natural Science Edition)
关键词
Collingnon
末位数字
循环节长度
numerals of least significant digit, length of recurring period, congruence