期刊文献+

均方稳定的多维AR系统的一个性质

PROPERTY OF MULTIDIMENSIONAL AR SYSTEMS BEING STABLE IN MEAN SQUARE
下载PDF
导出
摘要 ARX系统的随机适应控制常导致其闭环稳态 AR系统的均方稳定性 .在噪声满足一定的矩条件下 ,证明了若多维 AR系统 A( z) yk=wk 在下列意义下均方稳定 :lim supn→∞1n ∑nk=1‖yk‖ 2 <∞ a.s.则 det A( z)不可能有爆炸的根 ,即 det A( z)的零点全在单位圆上或圆外 . Stochastic adaptive stabilization of ARX system usually leads to the resulting system being stable in the mean square. Imposing certain conditions on the noise, this paper proves that multidimensional AR system A(z)y k=w k being stable in the mean square, by which it is meant that the long run average of the squared output is bounded: lim sup n→∞1n ∑nk=1‖ y k‖ 2<∞ , hasn't any explosive roots, i.e., all roots of det A(z) are on or outside the unit circle.
出处 《北京工商大学学报(自然科学版)》 CAS 2002年第3期59-62,共4页 Journal of Beijing Technology and Business University:Natural Science Edition
基金 国家自然科学基金资助项目 (2 0 0 0 -60 0 75 0 19)
关键词 多维AR系统 均方稳定 鞅差序列 随机控制系统 随机适应控制 爆炸 AR system stability in mean square martingale difference sequence
  • 相关文献

参考文献6

  • 1[1]Chen H F, Guo L. Identification and stachastic adaptive control[M]. Boston: Birkhauser, 1991.
  • 2[2]Guo L. Self-convergence of weighted least squares with applications to stochastic adaptive control[J]. IEEE Trans Autom Control, 1996,41(1):79-89.
  • 3[3]Shumway R H, Stoffer D S. Time series analysis and its applications[M]. New York: Springer-Verlag, 2000.
  • 4[4]Chen H F. Recursive estimation and control for stochastic system[M]. New York: Wiley, 1985.
  • 5[5]Chow Y S, Teicher H. Probabilty theory[M]. New York: Springer-Verlag, 1988.
  • 6[6]Stout W F. Almost sure convergence[M]. New York: Academic Press, 1974.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部