摘要
建立了一种改进的补偿模糊神经网络系统,使模糊系统较强的知识表达能力与神经网络强大的自学习能力优势互补.并提出了一种动态调整学习步长的机制,能够避免较大震荡现象的出现;同时加快了迭代速度,最后将该方法应用到预测我国第三产业的产值比重中,结果较为满意;与常规神经网络相比,迭代速度和误差精度都有大大的提高;实践证明该方法值得进一步推广运用.
This paper establishes a kind of improved Compensation Fuzzy Neural Networks which can impersonate the advantages of fuzzy system with ability to be prone to express knowledge and the advantages of neural networks with fairly strong selfadaptive ability. Then, a mechanism that can dynamically adjust the learning step is presented. So the sway phenomenon can be minimized and the learning step can be quickly speeded. Finally, the system is applied to predicting the proportion of tertiary industrial outputvalue. The result of experiment is satisfying. Compared to BP neural networks, the convergence speed and the error precision are improved a lot. Practice has proved that the method is worth further extending.
出处
《四川师范学院学报(自然科学版)》
2002年第3期249-252,共4页
Journal of Sichuan Teachers College(Natural Science)
关键词
实例分析
补偿模糊神经网络
动态学习步长
迭代速度
第三产业
产值比重
经济预测
compensation fuzzy neural networks
dynamic learning step
convergence speed
the proportion of tertiary industrial output-value