期刊文献+

应用数据挖掘技术从大脑胶质瘤病例中获取诊断知识 被引量:19

Data Mining in Diagnostic Knowledge Acquisition from Patients with Brain Glioma
下载PDF
导出
摘要 采用数据挖掘技术中 3种主要算法 :多层感知器网络、决策树以及规则提取从大脑胶质瘤病例中获取胶质瘤恶性程度的术前诊断知识。对于测试样本 ,它们的平均准确率都超过了 80 % ,达到了医生的一般要求。如果准确率是诊断中首要考虑的因素 ,那么隐层节点数较小且直接利用数值属性的多层感知器网络具有最好的性能。如果要对获取的诊断知识进行人工整理 。 In order to correctly predict the malignant degree of brain glioma, three data mining algorithms: multi-layer perceptron network(MLP), decision tree, and rule induction are adopted to acquire diagnostic knowledge from patients with brain glioma cases. Totally 280 cases are collected, and some of them contain missing values. Preprocessing is taken to make them applicable to all three algorithms. Performance comparisons are carried out with a 10-fold cross validation test. Although the result of MLP is hard to be understood and cannot be applied directly, its reliability and accuracy are the highest when only a few hidden nodes are involved. Unlike MLP, both decision tree and rule induction use attribute-value pairs to represent diagnostic knowledge derived from treated cases. These could improve both the understandability and applicability of their results. When compared with rule induction, the inherent restriction in structure makes decision tree more efficient in decision-making but meanwhile hurts its simplicity, accuracy, and reliability. For testing samples, results of all these algorithms can achieve accuracy rate over 80%, which satisfies the basic requirement of neuroradiologists. If diagnostic accuracy rate is the main factor to be considered, MLP with only a few hidden nodes is the best. If the result is expected to be further checked or evaluated, rule induction will be the best algorithm. This work proves that data mining techniques can be used to obtain valid diagnostic knowledge from brain glioma cases and make computer aided diagnosis system in this field feasible.
出处 《生物医学工程学杂志》 EI CAS CSCD 2002年第3期426-430,共5页 Journal of Biomedical Engineering
基金 国家"8 6 3"高技术计划资助项目 ( 86 3-5 11-945 -0 0 5 86 3-30 6 ZD13-0 5 -0 6 )
关键词 数据挖掘技术 多层感知器网络 决策树 规则提取 大脑胶质瘤 Multi-layer perceptron network Decision tree Rule induction Brain glioma
  • 相关文献

参考文献1

二级参考文献1

  • 1M. V. Spagnoli,R. I. Grossman,R. J. Packer,D. B. Hackney,H. I. Goldberg,R. A. Zimmerman,L. T. Bilaniuk. Magnetic resonance imaging determination of gliomatosis cerebri[J] 1987,Neuroradiology(1):15~18

共引文献1

同被引文献185

引证文献19

二级引证文献103

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部