期刊文献+

氮掺杂碳包覆LiMn0.8Fe0.2PO4的制备与性能

Preparation and performance of LiMn0. 8Fe0. 2PO4 with nitrogen doped carbon coating
下载PDF
导出
摘要 采用溶剂热法制备LiMn0.8Fe0.2PO4(LMFP),再利用聚苯胺热解形成的氮掺杂碳(N-C)进行包覆,得到LMFP/N-C复合材料。用XRD、SEM、透射电镜(TEM)和X射线光电子能谱(XPS)对样品的晶体结构、微观形貌及元素进行分析;以产物为正极活性物质组装锂离子电池,用恒流充放电、循环伏安和交流阻抗实验进行电化学性能测试。在2.0~4.6V充放电,LMFP/N-C复合材料在0.2C、0.5C、1.0C、5.0C和10.0C倍率下的首次放电比容量分别为152.5mAh/g、147.5mAh/g、140.0mAh/g、101.8mAh/g和64.6mAh/g,比普通碳包覆的LMFP/C材料分别提高3.6%、14.8%、14.4%、39.0%和90.0%;LMFP/N-C复合材料以5.0C循环80次,比容量仍有81.9mAh/g,容量保持率为80.45%。 LiMn0.8Fe0.2PO4(LMFP)was prepared by solvothermal method,then coated with nitrogen doped carbon(N-C)formed by the pyrolysis of polyaniline to obtain LMFP/N-C composite.The crystal structure,micromorphology and elements were analyzed by XRD,SEM,transmission electron microscope(TEM)and X-ray photoelectron spectrum(XPS).Li-ion battery was assembled with the products as cathode active material,the electrochemical performance was tested by galvanostatic charge/discharge tests,cyclic voltammetry and electrochemical impedance spectroscopy.When charged-discharged in 2.0-4.6 V,the initial specific discharge capacities of the LMFP/N-C composite at 0.2 C,0.5 C,1.0 C,5.0 C and 10.0 C were 152.5 mAh/g,147.5 mAh/g,140.0 mAh/g,101.8 mAh/g and 64.6 mAh/g,respectively,which were 3.6%,14.8%,14.4%,39.0%and 90.0%higher than those LMFP/C materials with conventional carbon coating.The specific capacity of LMFP/N-C composite could still maintain 81.9 mAh/g at the 80th cycle at 5.0 C,the capacity retention rate was 80.45%.
作者 郭隆泉 万柳 任丽 GUO Long-quan;WAN Liu;REN Li(School of Chemical Engineering and Technology,Hebei University of Technology,Tianjin 300130,China)
出处 《电池》 CAS CSCD 北大核心 2019年第4期296-300,共5页 Battery Bimonthly
基金 国家自然科学基金(51203041)
关键词 锂离子电池 LiMn0.8Fe0.2PO4 聚苯胺 氮掺杂碳 包覆 Li-ion battery LiMn0.8Fe0.2PO4 polyaniline nitrogen doped carbon coating
  • 相关文献

参考文献2

二级参考文献23

  • 1韩翀,沈湘黔,周建新.锂离子电池正极材料LiFePO_4的改性研究[J].材料导报,2007,21(F05):259-262. 被引量:8
  • 2PADHI A K, ANJUNDASWAMY K S, GOODENOUGH J B. Phospho-olivines as positive-electrode materials for re- ehargeable lithium batteries [J]. J Eleetroehem Soe, 1997, 144(4) : 1188-1194.
  • 3YI Huihua, HU Chenglin, FANG Haisheng, et al. Opti- mized electrochemical Metals performance of LiMn0. 9 Fe0.1-x" MgPO4/C for lithium batteries [J]. Electroehim Acta, 2011,56: 4052-4057.
  • 4YANG Gang, NI Huan, LIU Haidong, et al. The doping effect on the crystal structure and electrochemical properties of LiMnxM1-xPO4(M=Mg,V, Fe, Co, Gd) [J]. J Power Sources, 2011,196: 4747-4755.
  • 5LIU Shan, FANG Haisheng, YANG Bin, et al. Improving rate performance of LiMnPO4 based material by forming elec- tron-conducting iron phosphides [J]. J Power Sources, 2013, 230:267-270.
  • 6CHANG Xiaoyan, WANG Zhixing, LI Xinhai, et al. Syn- thesis and performance of LiMn0. 7 Fe0. a PO4 cathode material for lithium ion batteries[J]. Mater Res Bull, 2005, 40: 1513-1520.
  • 7SUA Jing, WEI Bingqing, RONG Jiepeng, et al. A general solution-chemistry route to the synthesis LiMPO4 (M= Mn, Fe and Co)nano crystals with [010] orientation for lithium ion batteries [J]. Solid State Chem, 2011, 184: 2909-2919.
  • 8MOLENDAA J, OJCZYKA W, CZEK K SWIER,et al. Dif- fusional mechanism of de-intercalation in LiFel-y Mny VO4 cathode material[J]. Solid State Ionics, 2006, 177: 2617- 2624.
  • 9Wizenta Nadja, Behra Gunter, Ferdin Lipps, et al. Single- crystal growth of LiMnPO4 by the floating-zone method [J]. J Cryst Growth, 2009, 311: 1273-1277.
  • 10MARTHA S K, MARKOVSKY B. LiMnPO4 as an advanced cathode material for rechargeable lithium batteries [ J ]. J Electrochem Soc, 2009,156(7): A541-A552.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部