摘要
目前水电机组状态监测系统大多存在监测点少、功能单一、缺乏系统性和综合性等问题,随着数据处理技术、神经网络技术、专家知识库技术等的发展,水电机组的故障诊断应用技术逐渐成熟。五强溪电厂水轮机状态在线预警系统利用机组状态在线监测的历史数据,提取故障诊断特征信息,建立机组健康样本模型,分析和预测设备故障的发展趋势,以提高水电机组设备可靠性,降低维修成本,提高机组可利用率。
At present,there are many problems in the condition monitoring system of hydropower units,such as few monitoring points,single function,lack of systematicness and comprehensiveness. With the development of data processing technology,neural network technology,expert knowledge base technology and other cutting-edge technologies,the application technology of fault diagnosis of hydropower unit is becoming mature.Wuqiangxi power plant turbine status on-line pre-warning system uses the historical data onto condition monitoring system,extract fault diagnosis feature information,establish health sample model,analysis and predict the development trend of equipment failure, in order to improve the hydropower equipment reliability,reduce the maintenance cost and improve the utilization rate of unit.
作者
侯凯
HOU Kai(Hunan Wuling Power Technology Corporation Ltd,Changsha 410004,China)
出处
《水电与抽水蓄能》
2019年第1期49-53,共5页
Hydropower and Pumped Storage
关键词
水电机组
故障智能预警
算法指标
hydropower units
intelligent fault warning
algorithm indicators