期刊文献+

基于加权l_1最小化的低复杂度波达方向估计算法

A low complexity algorithm based on the weighted l_1 inimization for DOA estimation
下载PDF
导出
摘要 基于阵列协方差矩阵的稀疏表征和阵列响应矩阵的Khatri-Rao积,提出了一种低运算复杂度的波达方向估计算法.所提算法在减少未知数个数的同时,通过线性变换降低约束方程的维数,可有效减少优化问题的计算复杂度.为充分利用阵列协方差矩阵中蕴涵的信息,使用Capon谱的倒数作为权值构建出了加权l1最小化问题,这使得所提算法在降低运算量的同时能够获得较好的估计性能.仿真实验验证了所提算法的有效性. Based on the sparse representation of the array covariance matrix and the Khatri-Rao product of the array response matrix,a low computational complexity sparse recovery method for direction-of-arrival(DOA)estimation is presented.The proposed algorithm not only lessens the number of unknown variable,but also can cut down the dimension of the constraints,which considerably reduce the computational complexity of the second order cone programming.Moreover,a weighted l1 minimization is designed by using the reciprocal of the Capon spectrum as a weighting vector.As a result,the proposed algorithm can achieve better performance while the computational complexity is reduced.Simulations demonstrate the performance of the proposed method.
出处 《电波科学学报》 EI CSCD 北大核心 2015年第4期640-646,共7页 Chinese Journal of Radio Science
基金 国家自然科学基金(61401496)
关键词 波达方向估计 加权l1最小化 稀疏恢复 等距线阵 direction-of-arrival(DOA)estimation weighted l1 minimization sparse recovery uniformly-spaced linear array(ULA)
  • 相关文献

参考文献15

  • 1王永良等著.空间谱估计理论与算法[M]. 清华大学出版社, 2004
  • 2Chundi Zheng,Gang Li,Xiqin Wang.Combination of weighted ? 2,1 minimization with unitary transformation for DOA estimation[J]. Signal Processing . 2013
  • 3Chundi Zheng,Gang Li,Yimin Liu,Xiqin Wang.Subspace weighted ?2,1 minimization for sparse signal recovery[J]. EURASIP Journal on Advances in Signal Processing . 2012 (1)
  • 4Emmanuel J. Candès,Michael B. Wakin,Stephen P. Boyd.Enhancing Sparsity by Reweighted ? 1 Minimization[J]. Journal of Fourier Analysis and Applications . 2008 (5)
  • 5B Ottersten,P Stoica,R Roy.Covariance Matching Estimation Techniques for Array Signal Processing Applications[J]. Digital Signal Processing . 1998 (3)
  • 6Jihao Yin,Tianqi Chen.Direction-of-Arrival Estimation Using a Sparse Representation of Array Covariance Vectors. IEEE Transactions on Signal Processing . 2011
  • 7Xu Xu,Xiaohan Wei,Zhongfu Ye.DOA Estimation Based on Sparse Signal Recovery Utilizing Weighted -Norm Penalty. Signal Processing Letters, IEEE . 2012
  • 8He, Z.Q.,Liu, Q.H.,Jin, L.N.,Ouyang, S.Low complexity method for DOA estimation using array covariance matrix sparse representation. Electronics Letters . 2013
  • 9P. Stoica,P. Babu,Jian Li.New Method of Sparse Parameter Estimation in Separable Models and Its Use for Spectral Analysis of Irregularly Sampled Data. IEEE Transactions on Signal Processing . 2011
  • 10Michael Grant,Stephen Boyd.CVX:Matlab software for disciplined convex programming,version 2.0 beta. http://cvxr.com/cvx . 2012

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部