摘要
针对传统目标提取算法在低信噪比条件下性能不理想且提取部件不连续的问题,提出一种基于部件分解的高分辨雷达目标提取算法.利用属性散射中心可以表征目标部件的散射回波的优势,通过构造属性散射中心基对目标信号进行分解.通过对分解部件的能量设置门限,提取属于目标的部件.实验结果证明:在低信噪比且虚警概率相同的情况下,基于部件分解的目标提取方法比传统基于像素能量的提取方法能提取出更多且更连续的目标部件.
In order to overcome the problems encountered by traditional radar target extracting method,a radar target extracting method based on the decompositions of assemblies is proposed for high-resolution radar images.Since the attributed scattering center model is capable to represent the electro-magnetic behaviors of manmade assemblies,it is advisable to decompose the radar signal into assemblies.Then,by setting a constant-false-alarm-rate threshold to the energy of decomposed assemblies,assemblies belonging to the target are determined.Experimental results validate the superiority of the proposal over the traditional method under low signal-to-noise ratio environment with same constant-false-alarm-rate probabilities.Moreover,the integrities of assemblies is enhanced.
出处
《电波科学学报》
EI
CSCD
北大核心
2015年第4期679-685,共7页
Chinese Journal of Radio Science
基金
国家自然科学基金(61301280)
国家自然科学优秀青年基金(61222108)
"973"项目(2010CB731903)
国家自然科学青年基金(61101245)
关键词
雷达目标提取
目标分解
属性散射中心
恒虚警率
rdar target extraction
target decomposition
attributed scattering centers
constant-false-alarm-rate(CFAR)