摘要
设{Xi}im=1是i、i、d随机变量列,F(x)=P(Xi<x)。令Zm=mx(X1,X2,…,XM),若存在实数列am及bm>0,对非退化的分布函数H(x)的一切连续点x,有 P(Zm<am+bmx)=H(x) (1)则称F(x)在H(x)的吸引场中,以F∈D(H)记之。由[1]可知H(x)只有三种类型。
Throughout this paper X_1, X_2, …, X_m denote i, i, d rondom variables with F(x)=P(X; <x). We put Z_m=max(X_1, X_2, …, X_m) and Y_m=(Z_m-a_m)/b_m, where am and b_m>0 are two sequence of real numbers. Y_m(n:n) denotes the Largest values from samples of size n of Y_m. The Y_m(n:n) are saied to be double maximumn. There, we have established relations betewn the domains of attraction of the. Limit distributions of extreme and Limt Laws of the expected values of double extreme
出处
《东北师大学报(自然科学版)》
CAS
1982年第3期37-41,共5页
Journal of Northeast Normal University(Natural Science Edition)