期刊文献+

锂离子电池硅基负极粘结剂研究进展 被引量:9

Advances of Binder for Silicone-based Anode in Lithium Ion Batteries
下载PDF
导出
摘要 由于硅在地壳中含量丰富且具有较高的理论比容量,成为近年来新一代高能量密度锂离子电池负极材料的研究热点。然而,硅在循环过程中会产生巨大的体积变化,会导致电极粉化脱落,容量快速衰减,限制了硅在锂离子电池中良好性能的发挥。虽然改性的硅基材料可以有效地缓解体积变化所产生的机械应变,但硅固有的体积变化效应是始终存在的,一种合适的粘结剂对于保持电极结构的完整性起到至关重要的作用。本文主要综述了近年来硅基负极粘结剂的研究进展,总结了合成类聚合物粘结剂、生物质聚合物粘结剂和导电聚合物粘结剂在硅基负极中的应用和性能特点,为今后在粘结剂的选择和设计上提供了重要的研究思路。 Silicon is expected to replace graphite materials become the new generation anode materials of lithium ion batteries(LIBs)due to abundant resources and high theoretical specific capacity.However,Siliconsuffers fromsevere volume change during thecycle process,resulting in pulverization and breakage of electrode and rapid capacity loss,limiting the development of the satisfactory performance in LIBs.Although modified silicon-based materials canmitigate effectively the mechanical strain resulting from volume change,but the intrinsic volume change effect of silicon always exists,an appropriate binder plays a critical role to maintain the integrity of electrode structure.This article reviewed the research progress of silicon-based anode binderin recent years,summarized the application and performance characteristics of the synthetic polymer binder,biomass polymer binder and conductive polymer binder in silicon-based anode.It provides an important research approach forthe choice and design of the binder in future.
出处 《电池工业》 CAS 2017年第1期31-44,共14页 Chinese Battery Industry
基金 国家自然科学杰出青年基金(No.51625204) 国家自然科学青年基金(No.21401208) 中国科学院青年创新促进会(No.2017253) 山东省自然科学基金(No.ZR2015QZ01)
关键词 锂离子电池 硅基负极 粘结剂 聚合物 Lithium ion batteries Silicon-based anode material Binder Polymer
  • 相关文献

参考文献6

二级参考文献215

  • 1孙杨正,廖小珍,马紫峰.锂离子电池硅基负极材料研究进展[J].电池,2004,34(3):194-195. 被引量:10
  • 2张成德,马圭.锂电池用聚偏氟乙烯粘结剂[J].化工生产与技术,2006,13(2):1-3. 被引量:9
  • 3周姣红,李奇,覃宇夏,丁航舟.聚偏氟已烯对LiNi_(0.8)Co_(0.2)O_2复合正极性能的影响[J].材料科学与工程学报,2006,24(5):766-768. 被引量:3
  • 4Halaj S A, Prakash J, et al. Characterization of commercial Li-ion batteries using electrochemical-calorimetric measurements[J]. Journal of Power Sources, 2000, 87(1-2) : 186-194.
  • 5SHI H,Barker J. Structure and lithium intercalation properties of synthetic and natural graphite[J]. Journal of the Electrochemical Society, 1996, 143(11): 3466-3472.
  • 6Kanevskiiand L S, Dubasova V S. Degradation of Lithium-Ion Batteries and How to Fight It: A Review[J]. Russian Journal of Electrochemistry, 2005, 44(1): 1-16.
  • 7Li H, Huang X J, et al. The crystal structure evolution of nano-Si anode caused by lithium Insertion and extraction at room temperature[J]. Solid State Ionics, 2000. 135(1-4):181-191.
  • 8Li Hong, Huang Xuejie, et al. A high capacity nano-Si composite anode material for lithium rechargeable batteries[J]. Electrochemical And Solid-state Letters, 1999, 2 : 547-549.
  • 9Wang G X, Sun L, et al. Nano-crystalline Ni-Si alloy as an anode material for lithium-ion batteries[J].Journal of Power Sources, 2000, 306: 249-252.
  • 10Roberts G A, Cairns E J, et al. Magnesium silicide as a negative electrode material for lithium-ion batteries [J]. Journal of Power Sources, 2002, 1107 424-428.

共引文献57

同被引文献34

引证文献9

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部