期刊文献+

隔膜对LiFePO_4高倍率软包锂离子电池性能的研究 被引量:2

Effect of separators on the performance of high-rate soft-pack lithium-ion battery
下载PDF
导出
摘要 影响锂离子电池快速充放电的因素很多,包括电池设计、正负极的尺寸、正负极材料结构、正负极面密度、正负极材料压实、电极表面电阻、电解质传质阻力等。本文研究了隔膜对LiFePO_4锂离子电池高倍率充放电性能影响。选取正极材料D50在(1.0~4.0)μm,比表面积(12~15)m^2/g,负极材料D50在(10.0~18.0)μm,比表面积(1.0~2.5)m^2/g,隔膜为16μm三层共挤时电池具有较好的倍率性能;室温下,在(2.0~3.65)V范围内,30C,40C放电容量分别是1C的91.99%,91.10%。室温下,在(2.0~3.65)V范围内,4C充电,4C放电,循环6145次,容量保持80.79%。 There are many factors affect the rapid charge and discharge of lithium ion batteries,including battery design,the size,material structure,surface density,and material compaction of positive and negative electrodes,electrode surface resistance,electrolyte mass transfer resistance,etc.In this paper,the effect of separator on the high rate charge and discharge performance of LiFePO4 lithium ion battery was studied.The positive electrode material D50 is1.0μm^4.0μm,the specific surface area is 12 m2/g^20 m2/g,the negative electrode material D50 is 10.0μm^18.0μm,the specific surface area is 1.0 m2/g^2.5 m2/g,and when the separator is 16μm three-layer coextrusion,the battery has better rate performance.At room temperature with the voltage range of 2.0 V^3.65 V,30 C,40 Cdischarge capacity retention are91.99%and 91.10%of 1 C.At room temperature with the voltage range of 2.0 V^3.65 V,4 C charge,4 Cdischarge,cycle 6145 times,the capacity retention is maintained at 80.79%.
作者 魏彦聪 郝宁 魏贝贝 庞自钊 WEI Yan-cong;HAO Ning;WEI Bei-bei;PANG Zi-zhao(Tianjin Guoan Alliance Guli New Materials Co.,Ltd.,Baodi,Tianjin 301802,China;Yuanda Hongyu(Tangshan)Waterproof Material Co.,Ltd.,Tangshan,Heibei Province 063000,China)
出处 《电池工业》 CAS 2019年第1期3-7,共5页 Chinese Battery Industry
关键词 磷酸铁锂(LiFePO4) 锂离子电池 高倍率 放电性能 LiFePO4 Lithium ion battery High rate Discharge performance
  • 相关文献

参考文献5

二级参考文献74

  • 1雷彩红,李光宪.锂离子电池用聚烯烃类隔离膜研究进展[J].高分子材料科学与工程,2006,22(6):18-22. 被引量:9
  • 2刘素琴,龚本利,黄可龙,张戈,李世彩.新型碳热还原法制备LiFePO_4/C复合材料及其性能研究[J].无机材料学报,2007,22(2):283-286. 被引量:18
  • 3TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001,414(6861): 359-367.
  • 4WANG Y, CAO G Z. Developments in nanostructured cathode materials for high-performance lithium-ion batteries [J]. Adv Mater, 2008, 20(12): 2251-2269.
  • 5AHN S, KIM Y, KIM K J, et al. Development of high capacity,high rate lithium ion batteries utilizing metal fiber conductive additives [J]. J Power Sources, 1999, 81-82: 896-901.
  • 6YANG S B, SONG H H, CHEN X H. Expansion of mesocarbon microbeads [J]. Carbon, 2006, 44(4): 730-733.
  • 7TAKAMI N, SATOH A, HARA M, et al. Rechargeable lithium-ion cells using graphitized mesophase-pitch-based carbon fiber anodes[J]. J Electrochem Soc, 1995, 142(8): 2564-2571.
  • 8ZAGHIB K, BROCHU F, GUERFI A, et al. Effect of particle size on lithium intercalation rates in natural graphite [J]. J Power Sources, 2001, 103(I): 140-146.
  • 9SU F B, ZHAOX S, WANG Y, et al. Hollow carbon spheres with a controllable shell structure [J]. J Mater Chem, 2006, 16 (45): 4413-4419.
  • 10WANG Y, SU F B, LEE J Y, et al. Crystalline carbon hollow spheres, crystalline carbon-SnO2 hollow spheres, and crystalline SnO2 hollow spheres: Synthesis and performance in reversible Li-ion storage [J]. Chem of Mater, 2006, 18(5): 1347-1353.

共引文献53

同被引文献9

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部