期刊文献+

混凝土框架结构的随机地震反应与整体可靠度分析

Stochastic seismic response and global reliability analysis of concrete frame structures
下载PDF
导出
摘要 采用概率密度演化理论,进行了典型混凝土框架结构的随机地震反应与抗震整体可靠性分析。文中,通过引入赋得概率的影响,有效地降低了点集的广义F偏差与广义L2偏差,从而显著地提高了分析精度。在此基础上,实现了结构参数具有随机性的6层钢筋混凝土结构在地震动作用下的随机动力反应分析。进而,考察了各个基本随机变量的整体灵敏度,并通过施加吸收边界条件,进行了混凝土框架结构的整体可靠性分析。 The probability density evolution method is employed to implement stochastic seismic response analysis and global reliability evaluation of a typical concrete structure. In the present paper,the effect of assigned probabilities is taken into account. By doing so the generalized F-discrepancy and the generalized L2-discrepancy of point sets are greatly reduced,consequently the accuracy and efficiency are improved considerably. The stochastic seismic response analysis of a 6-story concrete structure with random parameters is then performed. Further,the global sensitivity of the basic random variables is evaluated,and the global reliability of the concrete structure is obtained by solving the generalized density evolution equation imposed by an absorbing boundary condition.
出处 《地震工程与工程振动》 CSCD 北大核心 2014年第S1期323-327,共5页 Earthquake Engineering and Engineering Dynamics
基金 国家自然科学基金项目(11172210 51261120374) 国家"十二.五"科技支撑计划课题(2011BAJ09B03-02) 土木工程防灾国家重点实验室开放课题基金项目(SLDRCE12-MB-04)
关键词 概率密度演化理论 赋得概率 钢筋混凝土框架结构 整体灵敏度 整体可靠性 probability density evolution method assigned probability concrete frame structure global sensitivity global reliability
  • 相关文献

参考文献11

  • 1陈建兵,李杰.结构随机动力非线性反应的整体灵敏度分析[J].计算力学学报,2008,25(2):169-176. 被引量:5
  • 2欧进萍.多自由度体系的动力可靠性分析[J].地震工程与工程振动.1987(04)
  • 3Jian-Bing Chen,Jie Li.Development-process-of-nonlinearity-based reliability evaluation of structures[J].Probabilistic Engineering Mechanics.2007(3)
  • 4Jian-Bing Chen,Roger Ghanem,Jie Li.Partition of the probability-assigned space in probability density evolution analysis of nonlinear stochastic structures[J].Probabilistic Engineering Mechanics.2007(1)
  • 5Jie Li,Jianbing Chen.The principle of preservation of probability and the generalized density evolution equation[J].Structural Safety.2006(1)
  • 6Ang A H S;Tang,W. H.Probability Concepts in Engineering Planning and Design,1984.
  • 7Zhao, Yan-Gang,Ang, Alfredo H.-S.System reliability assessment by method of moments[].Journal of Structural Engineering.2003
  • 8Bertero R D,Bertero V V.Performance-based seismic engineering: the need for a reliable conceptual comprehensive approach[].Earthquake Engineering and Structural Dynamics.2002
  • 9Niederreiter H.Random Number Generation and Quasi-Monte Carlo Methods,1992.
  • 10Lutes LD,Sarkani S.Random Vibrations:Analysis of Structural and Mechanical Systems[].Journal of Women s Health.2004

二级参考文献14

  • 1李杰,陈建兵.随机结构非线性动力响应的概率密度演化分析[J].力学学报,2003,35(6):716-722. 被引量:65
  • 2林家浩.结构动力优化中的灵敏度分析[J].振动与冲击,1985,4(1):1-6.
  • 3FOX R L,KAPOOR M P. Rates of change of eigenvalue and eigenvectors[J]. Journal of AIAA, 1968,6 (12):2426-2429.
  • 4Sobol' I M. Sensitivity estimates for nonlinear mathematical model[J]. Mathematical Modeling and Computational Experiment, 1993,1 : 407-414.
  • 5HOMMA T,SALTELLI A. Importance measures in global sensitivity analysis of nonlinear models[J]. Reliability Engineering and System Safety, 1996,52 : 1-17.
  • 6MA F,ZHANG H,BOCKSTEDTE A,et al. Parameter analysis of the differential model of hysteresis[J]. Journal of Applied Mechanics, 2004,71 : 342-349.
  • 7Sobol' I M. On quasi-Monte Carlo integrations[J]. Mathematics and Computers in Simulation, 1998,47 : 103-112.
  • 8Sobol' I M, LEVITAN Y L. On the use of variance reducing multipliers in Monte Carlo computations of a global sensitivity index[J].Computer Physics Communications, 1999,117 : 52-61.
  • 9KLEIBER M, HIEN T D. The Stochastic Finite Element Method [M]. Chishcester : John Wiley'& Sons, 1992.
  • 10GHANEM R, SPANOS P D. Stochastic Finite Elements[M]. Berlin: Springer-Verlag, 1991.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部