期刊文献+

滞回结构随机地震反应概率密度演化分析

Probability density evolution analysis of seismic responses of hysteretic structures
下载PDF
导出
摘要 在工程实际中,要合理地评估复杂结构在地震作用下的整体性能,需要考虑结构参数的随机性。概率密度演化理论可以直接获取随机结构动力反应的概率密度函数及其演化过程。本文以广义F-偏差最小化作为代表点选取准则,采用扩展的Bouc-Wen滞回模型,对具有随机参数的滞回非线性多自由度结构进行了地震动反应概率密度演化分析。结果表明,随机结构的动力反应具有显著且复杂的演化特征,这些特征可以通过概率密度演化理论进行精细化分析。 In engineering practice,the randomness of structural parameters should be considered in order to assess reasonably the global performance of complicated structures under earthquake excitation. The probability density evolution method( PDEM) is capable of capturing the probability density functions and the corresponding evolution of the dynamical response of a stochastic structure. In this paper,the generalized F-discrepancy is adopted as the criterion of point selection. The extended Bouc-Wen hysteretic model is employed to characterize the nonlinear property of the restoring forces. The dynamical seismic response analysis of a nonlinear multi-degree-of-freedom structure with uncertain parameters is implemented by PDEM. The results demonstrate that the PDEM could be applied to capture the performance of hysteretic structures under strong earthquakes.
出处 《地震工程与工程振动》 CSCD 北大核心 2014年第S1期328-332,共5页 Earthquake Engineering and Engineering Dynamics
基金 国家自然科学基金项目(11172210 51261120374) 国家"十二.五"科技支撑计划课题(2011BAJ09B03-02)
关键词 随机结构 扩展Bouc-Wen滞回模型 地震反应 广义F-偏差 概率密度演化方法 stochastic structure extended Bouc-Wen hysteretic model seismic response generalized F-discrepancy probability density evolution method
  • 相关文献

参考文献11

  • 1陈建兵,李杰.结构随机地震反应与可靠度的概率密度演化分析研究进展[J].工程力学,2014,31(4):1-10. 被引量:30
  • 2Jie Li,Jianbing Chen,Weiling Sun,Yongbo Peng.Advances of the probability density evolution method for nonlinear stochastic systems[J].Probabilistic Engineering Mechanics.2011
  • 3Jian-bing Chen,Jie Li.Stochastic seismic response analysis of structures exhibiting high nonlinearity[J].Computers and Structures.2009(7)
  • 4Cun-li Wu,Xiao-ping Ma,Tong Fang.A complementary note on Gegenbauer polynomial approximation for random response problem of stochastic structure[J].Probabilistic Engineering Mechanics.2006(4)
  • 5Siu-Kui Au,James L. Beck.Estimation of small failure probabilities in high dimensions by subset simulation[J].Probabilistic Engineering Mechanics.2001(4)
  • 6Masanobu Shinozuka.Monte Carlo solution of structural dynamics[].Computers and Structures.1972
  • 7Kleiber M,Hien TD.The stochastic finite element method: Basic Perturbation Technique and Computer Implementation[].Journal of Women s Health.1992
  • 8Ma, F.,Zhang, H.,Bockstedte, A.,Foliente, G.C.,Paevere, P.Parameter analysis of the differential model of hysteresis[].Journal of Applied Mechanics Transactions ASME.2004
  • 9Chen J B,Zhang S H.Improving point selection in cubature by a new discrepancy[].SIAM Journal on Scientific Computing.2013
  • 10Li J,Chen JB.Stochastic Dynamics of Structures[].Journal of Women s Health.2009

二级参考文献20

  • 1Jie Li,Jianbing Chen.The principle of preservation of probability and the generalized density evolution equation[J].Structural Safety.2006(1)
  • 2Jie Li,Jianbing Chen,Weiling Sun,Yongbo Peng.Advances of the probability density evolution method for nonlinear stochastic systems[J].Probabilistic Engineering Mechanics.2011
  • 3Jian-bing Chen,Jie Li.Stochastic seismic response analysis of structures exhibiting high nonlinearity[J].Computers and Structures.2009(7)
  • 4B. Goller,H.J. Pradlwarter,G.I. Schu?ller.Reliability assessment in structural dynamics[J].Journal of Sound and Vibration.2013(10)
  • 5Jianbing Chen,Jie Li.Optimal determination of frequencies in the spectral representation of stochastic processes[J].Computational Mechanics.2013(5)
  • 6Mahesh D. Pandey,Xufang Zhang.System reliability analysis of the robotic manipulator with random joint clearances[J].Mechanism and Machine Theory.2012
  • 7Jun Xu,Jianbing Chen,Jie Li.Probability density evolution analysis of engineering structures via cubature points[J].Computational Mechanics.2012(1)
  • 8Lijie Cui,Zhenzhou Lu,Qi Wang.Parametric sensitivity analysis of the importance measure[J].Mechanical Systems and Signal Processing.2011
  • 9J. Li,Q. Yan,J.B. Chen.Stochastic modeling of engineering dynamic excitations for stochastic dynamics of structures[J].Probabilistic Engineering Mechanics.2011(1)
  • 10Zhang-Jun Liu,Jian-Bing Chen,Jie Li.Orthogonal expansion of Gaussian wind velocity field and PDEM-based vibration analysis of wind-excited structures[J].Journal of Wind Engineering & Industrial Aerodynamics.2011(12)

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部