摘要
由于横向磁通感应加热装置依然存在装置出口处沿带材宽度方向上带材表面温度分布不均匀的问题,制约其工业应用。感应加热器线圈形状和位置对带材表面涡流分布、温度分布和电磁力分布都会产生重要影响。本文提出一种新型横向磁通感应加热线圈结构,并在同等输入电流、相同规格被加热带材和同等气隙厚度条件下,与两种典型线圈结构进行比较。利用有限元方法进行三维仿真计算得到的运动带材表面的磁感应强度、涡流、热源和温度分布说明本文提出的感应线圈结构在保证效率的同时能够获得更为均匀的出口温度,为新型带材横向磁通感应加热装置的制作提供了理论依据。
The main disadvantages of transverse flux induction heating(TFIH) is the resulting inhomogeneous temperature distribution on the surface of the strip cross-section at the inductor outlet, which limit its industrial application. The coil geometry and the position of the coil edges relative to the work piece width mainly influence the distribution of the eddy current, temperature and the electromagnetic force. For solving this problem, a novel coil distribution of the inductor is presented in this paper, and the two typical coil structures at the same the input current, heating strip and air-gap are compared. The magnetic flux density, eddy current, heat source and temperature distribution of the moving strip obtained by finite element method have confirmed positively the feasibility of the proposed model in solving the problems of inhomogeneous temperature distribution and low efficiency. Simulation results provide a theoretical basis for the new type of TFIH device.
出处
《电工技术学报》
EI
CSCD
北大核心
2014年第4期85-90,共6页
Transactions of China Electrotechnical Society
基金
高等学校博士学科点专项科研基金(20131317110006)
河北省高等学校创新团队领军人才培育计划(LJRC003)
河北省高层次人才资助项目资助
关键词
横向磁通感应加热
线圈结构
涡流
温度分布
Transverse flux induction heating,coil shape,eddy current,temperature distribution