摘要
针对大功率高速永磁电机体积小、损耗密度大、散热困难且永磁体在高温下易发生不可逆退磁的问题,本文基于一台1.12MW,18 000r/min的高速永磁电机,设计了混合通风螺旋水道、轴向通风螺旋水道以及轴向通风直槽水道三种风冷与水冷相结合的散热方案,并建立了三种方案的温度场计算模型,基于流固耦合法,对三种方案的温度分布进行了比较与分析,同时基于轴向通风螺旋水道的冷却方案,加工了一台样机,并进行了温升实验,实验结果与计算结果相吻合,验证了仿真分析的正确性,对大功率高速永磁电机的设计与发展具有一定的借鉴意义。
Due to high loss density, cooling difficulties, permanent magnet being easy to occur irreversible demagnetization at high temperatures of high speed permanent magnet machine, three kinds of cooling schemes combined air-cooled with water-cooled(mixing ventilation and spiral waterway, axial ventilation and spiral waterway, axial ventilation and straight slot waterway) were designed for a 1.12 MW,18 000r/min high speed permanent magnet machine. The 3D temperature models of the machine with different cooling schemes were established, and fluid-solid coupling method was employed to analyze the thermal fields. A prototype was manufactured and a temperature experimental platform was developed. The experimental results have validated the cooling system design and temperature predictions, by which a theory gist for cooling system design and accurate calculation of temperature for the high power high speed permanent magnet machine is provided.
出处
《电工技术学报》
EI
CSCD
北大核心
2014年第S1期66-72,共7页
Transactions of China Electrotechnical Society
基金
长江学者和创新团队发展计划资助(IRT1072)
国家自然科学基金项目(51207094)
辽宁省高校创新团队支持计划项目(LT2011003)
关键词
高速永磁电机
冷却系统
混合通风
流固耦合
温度场
High speed permanent magnet machine,cooling system,mixing ventilation,fluid-solid coupling,temperature field