期刊文献+

基于近似熵的磁刺激穴位脑功能网络构建与分析 被引量:21

Brain Functional Network Based on Approximate Entropy of EEG under Magnetic Stimulation at Acupuncture Point
下载PDF
导出
摘要 针灸是基于传统中医的理论,经临床实践已证明其疗效,然而其作用机制仍不清楚。磁刺激穴位为研究针灸理论提供了一种新的方法。基于图论的复杂网络的构建和分析方法可以帮助研究脑功能网络的拓扑结构和理解大脑的工作机制。在该研究中,通过磁刺激内关穴(PC6)采集EEG信号;运用非线性动力学方法(近似熵)和复杂网络理论,基于磁刺激内关穴的脑电信号构建脑功能网络并对脑功能网络进行分析;对比分析了安静和磁刺激两种状态下的脑功能网络的拓扑性质。实验结果表明,基于刺激内关穴构建的脑功能网络,其拓扑结构发生了改变,网络连接增强,信息传输效率提高,并且"小世界"属性增强。 Acupuncture is based on the theory of the traditional Chinese medicine.Its therapeutic effectiveness has been proved by clinical practice.However,its effect mechanism is still unclear.Magnetic stimulation at acupuncture point provides a new means for studying the theory of acupuncture.Based on the graph theory,the construction and analysis method of complex network can help to investigate the topology of brain functional network and understand the working mechanism of the brain.In this study,magnetic stimulation is used to stimulate neiguan(PC6) acupoint and EEG signal is recorded;using non-linear method(approximate entropy) and complex network theory,brain functional network based on EEG signal under magnetic stimulation at PC6 acupoint is constructed and analyzed;the features of complex network are comparatively analyzed between the quiescent and stimulated states.The experimental results show the topology of the network is changed,the connection of the network is enhanced,and the efficiency of information transmission is improved and the 'small-world' property is stronger through stimulating PC6 acupoint.
出处 《电工技术学报》 EI CSCD 北大核心 2015年第10期31-38,共8页 Transactions of China Electrotechnical Society
基金 中国高等教育博士点(20121317110002) 河北省自然科学基金(H2013202176) 河北省高等学校创新团队领军人才培育计划(LJRC003)资助项目
关键词 脑电信号 磁刺激 内关穴 脑功能网络 近似熵 EEG signal magnetic stimulation neiguan acupuncture point brain functional network approximate entropy
  • 相关文献

参考文献11

  • 1R. SHALBAF,H. BEHNAM,J. SLEIGH,L. VOSS.Measuring the effects of sevoflurane on electroencephalogram using sample entropy[J]. Acta Anaesthesiol Scand . 2012 (7)
  • 2Juliane Britz,Dimitri Van De Ville,Christoph M. Michel.BOLD correlates of EEG topography reveal rapid resting-state network dynamics[J]. Neuroimage . 2010 (4)
  • 3Yu-Hsiang Pan,Yung-Hung Wang,Sheng-Fu Liang,Kuo-Tien Lee.Fast computation of sample entropy and approximate entropy in biomedicine[J]. Computer Methods and Programs in Biomedicine . 2010 (3)
  • 4Andrew C.N. Chen,Weijia Feng,Huixuan Zhao,Yanling Yin,Peipei Wang.EEG default mode network in the human brain: Spectral regional field powers[J]. Neuroimage . 2008 (2)
  • 5Humphries M.D,Gurney K,Prescott T.J.The brainstem reticular formation is a small-world, not scale-free, network[J]. Proceedings of The Royal Society B . 2005 (1585)
  • 6Watts DJ,Strogatz SH.Collective dynamics of small-world networks. Nature . 1998
  • 7Daneshyari Moayed,Kamkar L Lily,Daneshyari Matin.Epileptic EEG: a comprehensive study of nonlinear behavior. Advances in experimental medicine and biology . 2010
  • 8Hongli YuGuizhi XuQian Zh.EEG Characteristics Under Magnetic Stimulation at Acupuncture Point and at Mock Point. IEEE Transactions on Magnetics . 2012
  • 9K Supekar,V Menon,D Rubin,M Musen,MD Greicius.Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease. PLoS computational biology . 2008
  • 10He Y,Chen ZJ,Evans AC.Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cerebral Cortex . 2007

共引文献8

同被引文献201

引证文献21

二级引证文献169

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部