期刊文献+

基于LIDAR点云分类进行建筑物自动提取的研究

LIDAR Point Cloud Classification Based on Automatic Extraction of Buildings
下载PDF
导出
摘要 随着LIDAR技术在输电线路勘察设计的广泛应用,如何自动提取输电线路的房屋等建筑物成了一个新课题。以正确分类LIDAR点云为目标,综合利用不同类别目标点云的回波特征以及地形信息,本文提出了一种基于区域多次回波密度分析的LIDAR点云分类方法。该方法通过线性预测分离地面点和非地面点,同时将点云构建TIN获取封闭的等高线,利用等高线间的拓扑关系及形状相似性获得等高线族区域,统计每一区域的多次回波点云密度信息,通过建筑物和树木区域多次回波点云在区域密度上的巨大差异来识别出建筑物点云和树木点云。该方法充分利用了建筑物表面与植被间多次回波特性的差异,同时又不否定建筑物边缘同样存在的多次回波现象,通过等高线区域自适应的确定待识别目标的区域大小,弥补了传统LIDAR点云分类方法的不足,因而能够较其它方法更准确的分类LIDAR点云,为建筑物自动提取、树木自动提取等研究提供了保障,并通过试验验证了该方法的有效性。该研究为利用LIDAR技术进行输电线路GIS自动采集房屋提供了一种新方法,大大减少了外业采集房屋面积的工作量。 With a wide range of application for LIDAR technology in the transmission line survey and design, how to automatically extract the buildings has become a new topic. This paper presents a multi-echo point density based classification method for LIDAR point cloud by using the echo properties of different kind of objects and terrain information in order to classify the point cloud accurately. The proposed method is that first the terrain points and nonterrain points are distinguished by linear prediction, then the contour line are obtained from TIN constructed by the terrain points, finally the multi-echo point density of every contour line region which is determined by the topological relation of contour line and shape similarity is calculated, so the building points and tree points are recognized by the great difference of the regional multi-echo point densities of these two kind objects. This method makes up the traditional classification method for LIDAR points by utilizing the multi-echo point characteristic difference of the building surface and vegetation surface without ignoring the multi-echo phenomenon for building fringes. The results show that the new classification method can reach higher classification accuracy for automatic building extraction and automatic extraction of vegetation. The research provides a new approach for the use of LIDAR technology for automatic buildings extraction of Transmission Line GIS and greatly reduces the workload of site buildings collection.
作者 宋志勇 白皓
出处 《电力勘测设计》 2017年第S1期161-165,共5页 Electric Power Survey & Design
关键词 LIDAR 点云分类 等高线族 区域回波密度 LIDAR point cloud classification contour cluster regional echo density
  • 引文网络
  • 相关文献

参考文献4

二级参考文献22

  • 1张小红.利用机载LIDAR双次回波高程之差分类激光脚点[J].测绘科学,2006,31(4):48-50. 被引量:40
  • 2刘修国,张靖,高伟,陈启浩.Lidar点云数据中建筑物的快速提取[J].地球科学(中国地质大学学报),2006,31(5):615-618. 被引量:22
  • 3张艳,兰光华,郁生阳,杨静宇.一种快速SVM学习算法[J].计算机工程与应用,2006,42(32):36-38. 被引量:2
  • 4梁欣廉,张继贤,李海涛.一种应用于城市区域的自适应形态学滤波方法[J].遥感学报,2007,11(2):276-281. 被引量:18
  • 5[2]Haaala N,Brenner K.Generation of 3D city models from airborne laser scanning data.Proceedings EARSEL Workshop on LIDAR remote sensing on land and area,Tallinn/Estonia,1997.
  • 6[3]Haala N,Brenner C.Extraction of building and trees in urban environments[A].In:ISPRS Journal of photogrammetry and remote sensing[C],1999,54 (2/3):130-137.
  • 7[4]Lemmens M,Deijkers H,Looman P.Building detection by fusion airborne laser-altimeter DEMs and 2D digital maps[J].International Archives of Photogrammetry and Remote Sensing,1997,32,(3-4):42-49.
  • 8[5]Hug Ch,Wehr A.Detecting and identifying topographic objects in imaging laser altimetry data[J].International Archives of Photogrammetry and Remote Sensing,1997,32,(3-4):19-26.
  • 9[6]Maas H-G,Vosselman G.Two algorithms for extracting building models from raw laser altimetry data[A].In:ISPRS Journal of photogrammetry and remote sensing[C],1999,54(2/3):245-261.
  • 10[7]Haala N,Brenner C,Statter C.An integrated system for urban model generation[J].International Archives of Photogrammetry and remote sensing,1998,32,Part Ⅱ.

共引文献74

相关主题

;
使用帮助 返回顶部