摘要
采用BP神经网络 ,建立炼铜转炉吹炼造铜期终点与各影响因素之间的数学模型 ,对吹炼终点进行预报。经实践检验 ,模型具有较强的自学习及泛化能力 ,预报结果具有较高的精度 ,能有效地指导生产实践。
A mathematical model of endpoint and correlative factors is developed to predict the endpoint of matte-converting using the BP neural network model. It is proved by practice that the model has strong ability of self-studying and generalizing. The precision of the results is high enough to direct production process effectively.
出处
《有色金属(冶炼部分)》
CAS
2002年第5期24-27,共4页
Nonferrous Metals(Extractive Metallurgy)