摘要
针对各类别网络流分布不平衡的问题,设计了一种能够实现低存储、低时延、高准确率的网络视频流细分类算法.首先,采用改进的卡方离散算法对数据进行离散化处理;然后,提出了一种改进线性前向特征选择算法,选出有效的QoS相关特征;最后,设计一种链式和分级结构相结合的分类结构,完成网络视频流细分类.针对真实网络采集的7种网络视频流的分类试验结果表明,所提算法的分类准确率达到96.7%,而且在数据不平衡的情况下仍具有较高的识别率.
As for the imbalanced distribution of each category of internet flows, an internet video traffic classification algorithm with small memory, low latency and high classification accuracy was designed. First, a modified Chi2 discretization algorithm was used to discretize data. Then, a modified linear forward selection(MLFS) method was proposed to select effective QoS(quality of service) features. Finally, a classification structure combing a chain structure with a hierarchical structure was designed to achieve fine-grained classification of internet video flows. The experimental results of the traffic classification with seven categories in real-network dataset show that the classification accuracy of the proposed algorithm is 96.7%. And the high recognition rate can keep stable for the imbalanced dataset.
作者
吴争
董育宁
田炜
Wu Zheng;Dong Yuning;Tian Wei(College of Telecommunications and Information Engineering,Nanjing University of Posts and Telecommunications,Nanjing 210003,China)
出处
《东南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2019年第2期219-224,共6页
Journal of Southeast University:Natural Science Edition
基金
国家自然科学基金资助项目(61271233)
江苏省研究生培养创新工程资助项目(KYCX180894)
关键词
网络视频流分类
QOS
集成学习
分类结构
卡方离散算法
network video traffic classification
QoS(quality of service)
ensemble learning
classification structure
Chi2 discretization algorithm