期刊文献+

复杂决策表的特征提取方法研究 被引量:4

Research on the Feature Subset Selection of Complex Decision Tables
下载PDF
导出
摘要 特征提取是机器学习和决策表分析的重要步骤 ,直接关系到学习和决策质量 .文中对目前特征提取的几种主要方法 ,即动态约简、神经网络、超平面、模板和作者提出的决策表分解、ITIL算法进行了评述 ,指出这些方法存在的不足 ,为特征提取的进一步研究指明了方向 . Feature subset selection is an important topic in the fields of machine learning and rough analysis. It has the direct effect on the quality of knowledge elicited and corresponding decision. Cmade In this paper , some main methods for feature selection, including dynamic reduct ,neural networks, hyperplane plane, generalized template and the decomposition of decision tables , ITIL proposed herein are reviowed and the related problems are pointed out for further research.
出处 《小型微型计算机系统》 CSCD 北大核心 2002年第10期1241-1244,共4页 Journal of Chinese Computer Systems
关键词 复杂决策表 特征提取 示例学习 机器学习 decision table feature selection rough set
  • 相关文献

参考文献17

  • 1洪家荣.示例学习的扩张矩阵理论[J].计算机学报,1991,14(6):401-410. 被引量:31
  • 2John G H, Kohavi R , Pfloger K. Irrelevant features and the subset selection problem[C]. In : Mitchell T M ed. Proceeding on Machine Learning94. Morgan Koffmann Publishers,1994,121~129
  • 3Bazan,J. A compasion of dynamic and non-dynamic rough set methods for extracting laws from decision tables[C], In Polkowski and Skowron,(eds) Rough sets in Knowledge Discovery 1:Methodology and Apllications, Physica-Verlag,Heidelberg,1998:321~365
  • 4Nguyen,H S. Regularity analysis and its applications in data mining[D], Warsaw University, Poland:Warsaw,1999
  • 5Dominik Slezak. Attribute set decomposition of decision tables[C]. In: Proceedings of the Fifth European Congress on Intelligent Techniques and Soft Computing (EUFiT97), , Aachen, Germany, Verlag Mainz, 1997,236~240.
  • 6Blaz Zupan, Marko Bohanec, Janez Demsar et al. Learning by discovering concept hierarchies[J], Artificial Intelligence, 1999(109):211~242
  • 7Nguyen,S H., Nguyen,T T., Polkowski,L et al. Decision rules for large data tables[C] . In:Proceedings of Symposium on Modelling, Analysis and Simulation, France,Lille, 1996:942~947
  • 8樊群,赵卫东,达庆利.一种基于粗集的实例分解归纳学习方法[J].管理工程学报,2001,15(2):79-81. 被引量:5
  • 9Nguyen,H S., Nguyen,S H., Skowron,A. Searching for features defined by hyperplanes[C]. In Z W Ras, M Michalewicz(eds). Proc. of the IX International Symposium Methodologies for Information Systems, Polang,Kopane,1996
  • 10Rudy Setiono. Generating concise and accurate classification rules for breast cancer diagnosis[J]. Artificial Intelligence in Medicine. 2000,18:205~219

二级参考文献24

共引文献265

同被引文献60

引证文献4

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部