期刊文献+

基于高光谱图像技术的菜用大豆厚度检测 被引量:5

Thickness Measurement of Green Soybean Using Hyperspectral Imaging Technology
下载PDF
导出
摘要 菜用大豆厚度是划分菜用大豆等级的重要衡量指标之一。采用高光谱图像技术对菜用大豆的厚度进行预测。实验中选取200个菜用大豆作为测试样本,获取其高光谱反射图像,同时用数字式游标卡尺测量厚度值。选取400~1 000 nm范围的光谱信息,采用多元散射校正、标准归一化和导数计算对光谱数据预处理,结合偏最小二乘和多元线性回归两种分析方法建立厚度校正模型和预测模型。研究发现基于多元散射校正的偏最小二乘方法的模型精度较优,校正模型和预测模型的相关系数分别为0.956和0.933,均方根误差分别为0.59 mm和0.70 mm。研究结果表明可以利用高光谱图像技术预测菜用大豆厚度。 Thickness is an important index for the grade of green soybean.In this manuscript,hyperspectral imaging technology was used to determine the thickness of two hundreds green soybean.The hyperspectral reflectance images of the samples were acquired using hyperspectral imaging system and the instrumental thickness values were measured by digital caliper.The range of 400 ~1000 nm spectral information was preprocessed using multiplicative scatter correction algorithm(MSC),standard normal variate algorithm(SNV) and derivation calculation algorithm,respectively.Then,partial least squares(PLS) and multiple linear regressions(MLR) were used to develop calibration and prediction model.Results show that optimal models are obtained by MSC coupled with PLS method,which the correlation coefficients of calibration set and prediction set were 0.956 and 0.933 and the root mean square error is 0.59 mm and 0.70 mm,respectively.The aboved results demonstrated that hyperspectral imaging technology is suitable for detection of green soybean thickness e.
出处 《食品与生物技术学报》 CAS CSCD 北大核心 2012年第11期1142-1147,共6页 Journal of Food Science and Biotechnology
基金 国家自然科学基金项目(61271384 61275155) 江苏省自然科学基金项目(BK2011148) 中国博士后基金项目(2011M500851)
关键词 菜用大豆 高光谱图像 厚度检测 建模 vegetable soybean,hyperspectral images,thickness measurement,modeling
  • 相关文献

参考文献11

  • 1杨倩,张慜,李瑞杰.加工条件对豆干质构的影响[J].食品与生物技术学报,2011,30(5):683-686. 被引量:6
  • 2陆婉珍.现代近红外光谱分析技术(第二版)[M]北京:中国石化出版社,2007.
  • 3Cogdill R P,Hurburgh C R,Rippke G R. Single-kernel maize analysis by near-infrared imaging[J].Transactions of the ASAE,2004.311-320.
  • 4Lu R F,Qin J W. Detection of pits in tart cherries by hyperspectral transmission imaging[J].Transactions of the ASAE,2005,(05):1963-1970.
  • 5Lu R F,Ariana D P. Quality evaluation of pickling cucumbers using hyperspectral reflectance and transmittance imaging[J].Sensing and Instrumentation for Food Quality and Safety,2008,(03):144-151.
  • 6HUANG Min,LU R F. Apple mealiness detection using hyperspectral scattering technique[J].2010,(03):168-175.
  • 7Qin J W. Measurement of the optical properties of horticultural and food products by hyperspectral imaging[D].USA:Michigan State University,2007.
  • 8Maleki M R,Mouazen A M,Ramon H. Multiplicative Scatter Correction during On-line Measurement with Near Infrared Spectroscopy[J].Biosystems Engineering,2007,(03):427-433.
  • 9郭恩有,刘木华,赵杰文,陈全胜.脐橙糖度的高光谱图像无损检测技术[J].农业机械学报,2008,39(5):91-93. 被引量:55
  • 10王爽,黄敏,朱启兵.基于无信息变量和偏最小二乘投影分析的高光谱散射图像最优波段选择[J].光子学报,2011,40(3):428-432. 被引量:10

二级参考文献28

  • 1鲍松林,丁霄霖.稀碱液中的大豆浸泡行为(I)─—浸泡条件对大豆吸水率、吸水速率的影响[J].中国调味品,1995,20(11):14-17. 被引量:9
  • 2刘木华,赵杰文,郑建鸿,吴瑞梅.农畜产品品质无损检测中高光谱图像技术的应用进展[J].农业机械学报,2005,36(9):139-143. 被引量:49
  • 3洪添胜,乔军,Ning Wang,Michael O. Ngadi,赵祚喜,李震.基于高光谱图像技术的雪花梨品质无损检测[J].农业工程学报,2007,23(2):151-155. 被引量:111
  • 4LU Ren-fu. Nondestructive measurement of firmness and soluble solids content for apple fruitusing hyperspectral scattering images[J]. Sens& Instrumen Food Quality, 2007, 12(1) : 19-27.
  • 5JUAN Xing, PAl. T JANCSOK, et al. Detecting bruises on ‘Golden Delicious' apples using hyperspectral with muhiple wavebands[J]. Biosystems Engineering, 2005, 90(1) 2 : 7-36.
  • 6洪添胜 乔军 WangNing 等.基于高光谱图像技术的霄花梨品质无损检测.农业下程学报,:151-155.
  • 7CHEN Y R, CHAO K, KIM M S. Machine vision technology for agricultural applications[J]. Computers and Electronics in Agriculture, 2002, 36(2): 173-191.
  • 8MIN M, I.EE. Determination of significant wavelengths and prediction of nitrogen content for citrus[J]. Transactions ofthe ASAE, 2005. 48(2) : 455-461.
  • 9WU D, HE Y, FENG S. Shortwave near-infrared spectroscopy analysis of major compounds in milk powder and wavelength assignment [J]. Anal ytica Chimica Acta, 2008, 610(2): 232-242.
  • 10KOUMONSIS V K, KATSARAS C P. A saw-tooth genetic algorithm combining lhe effects of variable and reinitialization to enhance performance [ J ]. IEEE Transactions on Evolutionary Computation, 2006, 10(1): 19-28.

共引文献68

同被引文献92

引证文献5

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部