摘要
提出了基于约束的多维关联规则挖掘的粗糙集模型,将约束应用到粗糙集模型中,建立一个决策表,在条件粒度和决策粒度中采用用户投票和阈值的方法。粗糙集模型可以在垂直方向上大量的减少属性,并在水平方向上清晰的聚簇纪录,因此能有效的改进关联规则挖掘的质量。
Based on multi-dimensional bound mining association rules of the rough set model, the application will be bound to rough set model, to establish a decision-making table, in terms of particle size and decision-making and use of user vote threshold. Rough set model in the vertical direction to reduce the large number of properties, in the horizontal direction and a clear record of clustering, so effective in improving the quality of the mining association rules.
出处
《电脑知识与技术(过刊)》
2009年第1X期259-260,276,共3页
Computer Knowledge and Technology
基金
合肥学院科研基金项目(08KY033ZR)
关键词
数据挖掘
粗糙集
多维关联规则
data mining
rough set
Multi-dimensional Association Rules