期刊文献+

基于矩阵对角化的盲源分离算法研究 被引量:1

The Research of Blind Source Separation Algorithms Based on Matrix Diagonalization
下载PDF
导出
摘要 盲源分离是从观测信号中恢复源信号的一种有效方法,目前已成为信号处理领域的研究热点。首先对三种盲源分离的算法进行分析,它们是:四阶盲辨识(FOBI)、特征矩阵的联合近似对角化(JADE)、二阶盲辨识(SOBI)。分析表明这些算法均有各自的不足,而另一方面,它们都是通过矩阵对角化实现盲源分离的。一个很自然的想法是将这些算法结合起来,以提高盲源分离的性能。仿真结果表明,JADE法和SOBI法的结合可以获得不错的盲分离效果。 Blind source separation is an efficient method to recover source signals from observed signals, and it has become an attractive research in the field of signal processing. First this paper analyses three types of blind source separation algorithms, that is, fourth-order blind identification (FOBI), joint approximative diagonalization of eigenmatrix (JADE) and second-order blind identification (SOBI). Analysis shows that all these algorithms have drawbacks. On the other hand, all of them implement blind source separation by matrix diagonalization. A natural idea is to combine these algorithms, for improving performance in blind separation. The result of simulation indicates that the combination of JADE and SOBI does a good job in blind separation.
作者 杨志聪
出处 《电脑知识与技术》 2009年第4X期3258-3260,共3页 Computer Knowledge and Technology
关键词 盲源分离 矩阵对角化 JADE SOBI FOBI blind source separation matrix diagonalization JADE SOBI FOBI
  • 相关文献

参考文献8

  • 1刘琚,何振亚.盲源分离和盲反卷积[J].电子学报,2002,30(4):570-576. 被引量:63
  • 2张贤达,保铮.盲信号分离[J].电子学报,2001,29(z1):1766-1771. 被引量:211
  • 3Belouchrani A,Abed-Meraim K,Cardoso JF,et al.A blind source separation technique using second-order statistics[].IEEE Transactions on Signal Processing.1997
  • 4CARDOSO J.Sources separation using higher order moments[].Proc IEEE ICASSP.1989
  • 5Jean-Fran,Antoine Souloumiac.Blind beamforming for non Gaussian signals[].IEEEProceedings-F.1993
  • 6Cardoso J F,Comon P.Independent component analysis, a survey of some algebraic methods[].Proc ISCAS.1996
  • 7Cardoso,J. F.High-order contrasts for independent component analysis[].Neural Computation.1999
  • 8YEREDOR A.Non-orthogonal joint diagonalization in the least -squares sense with application in blind source separation[].IEEE Transactions on Signal Processing.2002

二级参考文献54

  • 1凌燮亭.近场宽带信号源的盲分离[J].电子学报,1996,24(7):87-92. 被引量:5
  • 2[1]Amari S.A theory of adaptive pattern classifiers [J].IEEE Trans.Electronic Computers,1967,16:299-307.
  • 3[2]Amari S.Natural gradient works efficiently in learning [J].Neural Comoutation,1998,10:251-276.
  • 4[3]Amari S,Cichocki A.Adaptive blind signal processing:Neural network approaches [J].Proc.IEEE,1998 ,86:2026-2048.
  • 5[4]Basak J,Amari S.Blind separation of uniformly distributed signals:A general approach [J].IEEE Trans.Neural Networks,1999,10:l173-1185.
  • 6[5]Bell A J,Sejnowski T J.An information-maximization approach to blind separation and blind deconvolution [J].Neural Computation,1995,7:1129-1159.
  • 7[6]Burel G.Blind separation of .sources:A nonlinear neural algorithm [J].Neural Networks,1992,5:937-947.
  • 8[7]Cao X R,Liu R W.A general approach to blind source separation [J].IEEE Trans.Signal Processing,1996,44:562-571.
  • 9[8]Cardoso J F.Blind signal separation:Statistical principles [J].Proc.IEEE,1998,86(10):2009-2025.
  • 10[9]Cardoso J F,Laheld B.Equivariant adaptive source separation [J].IEEE Trans.Signal Processing,1996,44:3017 - 3029.

共引文献257

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部