期刊文献+

一种改进的动态克隆选择算法在入侵检测中的应用

Research of the Intrusion Detection Model Based on Extended Dynamic Clonal Selection
下载PDF
导出
摘要 针对目前入侵检测系统不能有效检测已知攻击的变种和未知攻击行为的缺陷,受免疫系统中动态克隆选择算法的启发,提出了一种基于改进的动态克隆选择算法。该算法可以适应连续改变的环境,动态地学习变化的"正常"模式以及预测新的"异常"模式。经实验证明,该算法在入侵检测中,在降低误报率的情况下,提高了检测率。 Because intrusion detection systems couldn't detect the mutant of existing intrusion behavior and undefined intrusion behavior effectively,according to the Dynamic Clonal Selection algorithms in the biological immune system,this paper presents an intrusion detection model based on extended Dynamic Clonal Selection algorithms.This algorithms adapt to continuously changing environments,dynamically learning the fluid normal patterns and predict new anomaly patterns.Experiment results show that this algorithms improves the detection rate and maintains a low false alarm rate,In aspects of the intrusion detection.
作者 王俊 田玉玲
出处 《电脑知识与技术》 2010年第4X期3243-3245,共3页 Computer Knowledge and Technology
关键词 动态克隆选择 人工免疫 自体 非自体 入侵检测 dynamic clonal selection artificial immune self nonself intrusion detection
  • 相关文献

参考文献5

  • 1张凤斌,杨永田,江子扬.遗传算法在基于网络异常的入侵检测中的应用[J].电子学报,2004,32(5):875-877. 被引量:30
  • 2Jungwon Kim,Peter Bentley.Immune Memory and Gene Library Evolution in the Dynamic Clonal Selection Algorithm[J].Genetic Programming and Evolvable Machines.2004(4)
  • 3Fabio A. González,Dipankar Dasgupta.Anomaly Detection Using Real-Valued Negative Selection[J].Genetic Programming and Evolvable Machines.2003(4)
  • 4Dasgupta D.Artificial Immune Systems and Their Applications[]..1999
  • 5Gonzalez F,Dasgupta D.Anomaly Detection Using Real-Valued Negative Selection[].Genetic Programming.2003

二级参考文献6

  • 1E Eskin.Anomaly detection over noisy data using learned probability distributions[A].Proceedings of the 17th International Conference on Machine Learning[C].San Mateo,CA:Morgan Kaufmann,2000.255-262.
  • 2T Lane,C Brodley.Temporal sequence learning and data reduction for anomaly detection[J].ACM Trans Info System Security,1999,2:295-331.
  • 3T Lane,C E Brodley.Data reduction techniques for instancebased learning from human/computer interface data[A].Proceedings of the 17th International Conference on Machine Learning[C].San Mateo,CA:Morgan Kaufmann,2000.519-526.
  • 4D Dasgupta,F Gonzalez.An immunity-based technique to characterize intrusions in computer networks[J].IEEE Transactions on Evolutionary Computation,2002,3(6):281-291.
  • 5E Zitzler,L Thiele.Multi-objective evolutionary algorithms:comparative case study and the strength pareto approach[J].IEEE Trans of Evolutionary Computation,1999,3(4):257-271.
  • 6M Srinivas,M Patnaik.Adaptive probabilities of crossover and mutation in genetic algorithms[J].IEEE Trans on Systems,Man,and Cybernetics,1993,24(4):656-667.

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部