期刊文献+

用于Web用户聚类的基于差分进化的模糊聚类算法 被引量:1

A DE-based Clustering Algorithm for Solving Web User Clustering
下载PDF
导出
摘要 Web用户聚类是实现自适应网站和为用户提供个性化信息服务的关键技术之一。将FCM算法与差分进化算法相结合,提出一种用于解决web用户聚类问题的混合算法,改进了适应度函数,并采用局部搜索策略进一步增强算法的寻优能力,加入FCM优化操作加速算法的收敛。实验表明,该算法全局搜索能力强,实现了较好的用户聚类效果。 Web user clustering is one of the most important technologies to develop the adaptive site and to provide individualized information service.A new hybrid algorithm based on differential evolution and fuzzy c-mean algorithm is proposed to solve the problem of web user clustering.In the new algorithm,the fitness function is improved and the local search strategy is applied to enhance the ability of finding optimal solution.In order to accelerate the convergence,the FCM optimizing operation is utilized.Experimental results reveal that the proposed algorithm has strong capability of global search and can get the satisfactory performance in user clustering.
作者 王艳茹
机构地区 山东科技大学
出处 《电脑知识与技术》 2011年第10X期7452-7454,7456,共4页 Computer Knowledge and Technology
关键词 WEB用户聚类 差分进化算法 模糊C-均值算法 局部搜索 Web user clustering differential evolution Fuzzy C-Mean algorithm local search
  • 相关文献

参考文献1

二级参考文献13

  • 1Brccsc J, Hcchcrman D, Kadic C. Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI'98). 1998.43~52.
  • 2Goldberg D, Nichols D, Oki BM, Terry D. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 1992,35(12):61~70.
  • 3Resnick P, lacovou N, Suchak M, Bergstrom P, Riedl J. Grouplens: An open architecture for collaborative filtering of netnews. In:Proceedings of the ACM CSCW'94 Conference on Computer-Supported Cooperative Work. 1994. 175~186.
  • 4Shardanand U, Mats P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proceedings of the ACM CHI'95 Conference on Human Factors in Computing Systems. 1995. 210~217.
  • 5Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proceedings of the CHI'95. 1995. 194~201.
  • 6Sarwar B, Karypis G, Konstan J, Riedl J. Item-Based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International World Wide Web Conference. 2001. 285~295.
  • 7Chickering D, Hecherman D. Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables.Machine Learning, 1997,29(2/3): 181~212.
  • 8Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977,B39:1~38.
  • 9Thiesson B, Meek C, Chickering D, Heckerman D. Learning mixture of DAG models. Technical Report, MSR-TR-97-30, Redmond:Microsoft Research, 1997.
  • 10Sarwar B, Karypis G, Konstan J, Riedl J. Analysis of recommendation algorithms for E-commerce. In: ACM Conference on Electronic Commerce. 2000. 158~167.

共引文献558

同被引文献11

  • 1王家耀,张雪萍,周海燕.一个用于空间聚类分析的遗传K-均值算法[J].计算机工程,2006,32(3):188-190. 被引量:19
  • 2MacQueen J. Some methods for classification and analysis of multi-variate observations[C]//Proc, of the 5th Berkeley Symposium on Mathematics Statistic Problem, 1967, 1: 281-297.
  • 3Michael Laszlo, Sumitra Mukherjee.A genetic algorithm that exchanges neighboring centers for k-means clustering[J]. Pattern Recogni- tion Letters,2007,28(16):2359-2366.
  • 4Omran M G H, Engelbrecht A P, Salmau A. Dynamic clustering using particle swarm optimization with application in unsupervised image classification [J]. Proceedings of World Academy of Science, Engineering and Technology, 2005, 9(11): 199-204.
  • 5Storn R, Price K.Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J].Journal of Global Optimization, 1997, 11(4):341-359.
  • 6Paterlini S , Krink T.High performance clustering with differential evolution[C]//Proc, of Congress on Evolutionary Computation,2004,2: 2004-2011.
  • 7Sudhakar G. Effective image clustering with differential evolution technique[J]. International Journal of Computer and Communication Technology,2010,2( 1 ): 11-19.
  • 8Kuo-Tong Lan, Chun-Hsiung Lan.Notes on the distinction of Gaussian and Cauehy mutations[C]//Proc, of Eighth International Con- ference on Intelligent Systems Design and Applications,2008:272-277.
  • 9刘兴阳,毛力.基于Laplace分布变异的改进差分进化算法[J].计算机应用,2011,31(4):1099-1102. 被引量:3
  • 10沈明明,毛力.融合K-调和均值的混沌粒子群聚类算法[J].计算机工程与应用,2011,47(27):144-146. 被引量:6

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部