期刊文献+

数据挖掘中的半监督学习及算法实现

A Brief Introduction to Semi-supervised Learning in the Data Mining and a Realization for a Semi-supervised Learning Algorithm
下载PDF
导出
摘要 随着数据挖掘在现代社会生产活动中扮演着越来越重要的角色,在计算机科学和其他相关领域中它都受到了很大的重视。在这篇文章中,我将向您简单介绍一个关于机器学习和数据挖掘的前沿领域——半监督学习。为了使数据挖掘的初级读者更好的了解,我将简化一下算法,也就是说,我会忽略一些操作和参数,仅展现一些重要的过程。 As data mining is becoming more and more popular in modern society productive activities,it has been paid much attention both at the domain of computer science and other fields.And in this article,I will discuss a new sphere of machine learning and data mining,which is named semi-supervised learning.First,I am going to have a brief introduction to semi-supervised learning and something related to it.And then,I plan to realize a semi-supervised learning algorithm.However,since I have only a little knowledge about it and for the sake of making this article understandable for people who know a bit concerning data-mining,I decide to simplify the algorithm,that is,I am intend to ignore some operation and parameters,just to display some process.
作者 王理华
出处 《电脑知识与技术》 2011年第12X期9413-9415,共3页 Computer Knowledge and Technology
关键词 数据挖掘 半监督学习 TRI-TRAINING 机器学习 数据处理 data mining semi-supervised learning tri-training machine learning date processing
  • 相关文献

参考文献4

  • 1陈毅松,汪国平,董士海.基于支持向量机的渐进直推式分类学习算法[J].软件学报,2003,14(3):451-460. 被引量:88
  • 2Tan Pang-Ning,Steinbach M,Kumar V.introduction to Data Mining[]..2006
  • 3Zhu Xiaojin.Semi-Supervised Learning Literature Survey[].Tech-nich report Department of computer sciences University of Wisconsin at Madison.2008
  • 4Zhou Z H,Li M.Tri-Training:Exploiting Unlabeled Data Using Three Classifiers[].IEEE Transactions on Knowledge and Data Engineering.2005

二级参考文献17

  • 1[1]Vapnik V. The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995.
  • 2[2]Stitson MO, Weston JAE, Gammerman A, Vovk V, Vapnik V. Theory of support vector machines. Technical Report, CSD-TR-96-17, Computational Intelligence Group, Royal Holloway: University of London, 1996.
  • 3[3]Cortes C, Vapnik V. Support vector networks. Machine Learning, 1995,20:273~297.
  • 4[4]Vapnik V. Statistical Learning Theory. John Wiley and Sons, 1998.
  • 5[5]Gammerman A, Vapnik V, Vowk V. Learning by transduction. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence. Wisconsin, 1998. 148~156.
  • 6[6]Joachims T. Transductive inference for text classification using support vector machines. In: Proceedings of the 16th International Conference on Machine Learning (ICML). San Francisco: Morgan Kaufmann Publishers, 1999. 200~209.
  • 7[7]Boser BE, Guyon IM, Vapnik VN. A training algorithm for optimal margin classifiers. In: Haussler D, ed. Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory. Pittsburgh, PA: ACM Press, 1992. 144~152.
  • 8[8]Burges CJC. Simplified support vector decision rules. In: Saitta L, ed. Proceedings of the 13th International Conference on Machine Learning. San Mateo, CA: Morgan Kaufmann Publishers, 1996. 71~77.
  • 9[9]Osuna E, Freund R, Girosi F. An improved training algorithm for support vector machines. In: Proceedings of the IEEE NNSP'97. Amelia Island, FL, 1997. 276~285.
  • 10[10]Joachims T. Making large-scale SVM learning practical. In: Scholkopf, Burges C, Smola A, eds. Advances in Kernel Methods--Support Vector Learning B. MIT Press, 1999.

共引文献88

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部