期刊文献+

从互联网、物联网到地球神经网络——全球互联的未来之路 被引量:1

From Internet, Internet of Things, to Earth Neural Network:The Roadmap of Global Interconnection
下载PDF
导出
摘要 该文提出从互联网、物联网到智慧地球,一个由低级到高级、由简单到复杂的地球神经网络(ENN:Earth Neural Network)正在快速进化,文中对其雏形感测网进行了系统的分析和论述,重点研究了开放地理空间联盟的Sensor Web Enablement框架和和微软的SenseWeb实践,最后探讨ENN的进化,论证了智能感测设备和感测网的出现是其演进历程的两个重要事件,以及泛在化、普适化、中枢化的进化趋势,和中枢系统的结构等级化、功能区块化等分化特点,并预测ENN将渗透到人类与自然的发展进程中,普适计算、智能空间和智慧地球也必将深深地依赖于这个网络。 This paper put forward that from Internet,Internet of Things to Smart Planet,an Earth Neural Network(ENN) is rapidly evolv ing from low level to high level and from simple to complex,then systematically discussed its embryo Sensor Web,focusing on the study of Sensor Web Enablement Framework by Open Geospatial Consortium and SenseWeb Practice by Microsoft,part III explored the evolution of ENN,argued that the emergence of Smart Sensing Devices and Sensor Web are two great events in ENN history,as well as the evolving trend of ubiquity,pervasiveness,centralization,and the differentiation characteristics in the central nervous system,such as hierarchical struc ture and partitioned functions,finally predicated that ENN will penetrate into the process of Human and Natural’s development,Ubiqui tous Computing,Smart Space and Smart Planet will rely heavily on this network.
作者 余涛
出处 《电脑知识与技术》 2012年第1X期700-703,共4页 Computer Knowledge and Technology
关键词 互联网 物联网 智慧地球 地球神经网络 电子神经细胞 初级反射弧 internet internet of things smart planet earth neural network electronic neural cell primary reflex arc
  • 相关文献

参考文献10

  • 1.Intelligent Infrastructure Lab[]..
  • 2NSF.The Sensor Revolution[]..
  • 3Puccinelli D,et al.Wireless Sensor Networks:Applications and Challenges of Ubiquitous Sensing[].IEEE Circuits and Systems Magazine.2005
  • 4Barnes C,et al.The NEPTUNE Canada Regional Cabled Ocean Observatory[].Sealing Technology.2009
  • 5Botts M,et al.OGC Sensor Web Enablement:Overview and High Level Architecture[].OpenGIS White Paper.2007
  • 6Nittel S.A Survey of Geosensor Networks:Advances in Dynamic Environmental Monitoring[].Sensors.2009
  • 7.Intel Mote 2[]..
  • 8Akyilidiz I F,Su W,Sankarasubramaniam Y,et al.A survey on sensor networks[].IEEE Communications Magazine.2002
  • 9Sam Palmisano.A Smarter Planet:The Next Leadership Agenda[]..2008
  • 10KANSAL A,NATH S,LIU J,et al.Senseweb:an infrastructure for shared sensing[].IEEE Multimedia.2007

共引文献1

同被引文献23

  • 1Rao E P R, Satyanarayana B V, Nayak S. Ocean Data and Information System (ODIS) and Web - Based Services [ J ]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,2008,37 (4) :697 -701.
  • 2Nayak S,Kumar T S. Indian tsunami warning system[ J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing, 2008 (37) :1 501 -1 506.
  • 3Nayak S, Kumar T S. Indian tsunami warning system[ J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing, 2008 (37) :1 501 -1 506.
  • 4Myers T, Atkinson I, Johnstone R. Semantically enabling the SEMAT Project: extending marine sensor networks for decision support and hypothesis testing [ C ]//Complex, Intelligent and Software Intensive Systems (CISIS) , Inter- national Conference on. IEEE,2010.
  • 5Durbha S S, King R L, Amanchi S K, et al. Standards - based middleware and tools for coastal sensor web applica- tions[ J ]. Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of,2010,3 (4) :451 - 466.
  • 6Amato F, Casola V, Gaglione A, et al. A semantic en- riched data model for sensor network interoperability [ J ]. Simulation Modelling Practice and Theory ,2011,19 ( 8 ) : 1 745 - 1 757.
  • 7Ladner R, Petry F E, Lin B, et al. Web Access of Mete- orological and Oceanographic Data [ M ]. IEEE, 2008,2 (2) :322 -331.
  • 8Suarez G, van Eck T, Giardini D, et al. The Internation- al Federation of Digital Seismograph Networks (FDSN) : An Integrated System of Seismological Observatories [ J ]. Systems Journal, IEEE,2008,2 ( 3 ) :431 - 438.
  • 9Zielinski A, Saxena N. Tsunami detectability using open - ocean bottom pressure fluctuations [ J ]. Oceanic Engi- neering, IEEE Journal of, 1983, 8(4) : 272 -280.
  • 10Casey K, Lim A, Dozier G. Evolving general regression neural networks for tsunami detection and response [ C ]// Evolutionary Computation, 2006. CEC 2006. IEEE Con- gress on. IEEE ,2006.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部