期刊文献+

基于Bag of words模型的图像检索系统的设计与实现 被引量:1

Based on the Bag of Words of the Model of Image Retrieval System Design and Implementation
下载PDF
导出
摘要 该系统将Bag of words模型用于大批量图像检索,基于OpenCV C语言库提取图像的SIFT特征,然后使用Kmeans算法进行聚类,再将其表示成Bag of words矢量并进行归一化,实现大批量图像检索,并用caltech256数据集进行实验。实验表明,该系统该系统采用的方法是有效的。 The system will be Bag of words model used in large quantities of image retrieval,based on OpenCV C library image SIFT fea ture extraction,and then use Kmeans clustering algorithm,and then it says a Bag of words and vector normalization,realizing mass image retrieval,and caltech256 data set for experiments.Experiments show that the system adopts the method is effective.
出处 《电脑知识与技术(过刊)》 2012年第2X期1139-1141,1156,共4页 Computer Knowledge and Technology
关键词 SIFT Kmeans Bag of words 大批量 图像检索 SIFT kmeans bag of words mass data image retrieval
  • 相关文献

参考文献5

  • 1何友松,吴炜,陈默,杨晓敏,罗代升.基于Bag of Features算法的车辆图像识别研究[J].电视技术,2009,33(12):104-107. 被引量:9
  • 2David G. Lowe.Distinctive Image Features from Scale-Invariant Keypoints[J]. International Journal of Computer Vision . 2004 (2)
  • 3Bay H,Ess A,Tuytelaars T,et al.SURF:Speeded Up Robust Features[].Computer Vision and Image Understanding.2008
  • 4Gabriella Csurka,Christopher R. Dance,Lixin Fan,et al."Visual categorization with bags of keypoints,"[].Workshop on Statistical Learning in Computer Vision ECCV.2004
  • 5David G Lowe.Object recognition from local scale-invariant features. Proceedings of the 7th IEEE International Conference on Computer Vision(ICCV ’99) . 1999

二级参考文献10

  • 1何得平,朱光喜,赵广州.快速Gabor滤波器在车型识别中的应用[J].计算机应用,2008,28(S2):193-195. 被引量:1
  • 2CSURKA G, DANCE C, FAN L, et al. Visual categorization with bags of keypoints [EB/OL].[2009-05-05].http://www.cs.cmu.edu/-e- fros/courses/AP06/Papers/csurka-eccv-04.pdf.
  • 3NOWAK E, JURIE F, TRIGGS B. Sampling strategies for Bag of Features image classi?cation[EB/OL].[2009-05-05].http://cat.inist.fr/ ?aModele=afficheN&cpsidt=20046282.
  • 4MIKOLAJCZYK K, SCHMID C. A performance evaluation of local descriptors[J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2005, 27(10):1615-1630.
  • 5LOWED. Object recognition from local scale-invariant features[C]// Proc. the Seventh IEEE International Conference on Computer Vision. [S.l.] : IEEE Press, 1999 : 1150-1157.
  • 6JURIE F, TRIGGE B. Creating efficient codebooks for visual recognition[C]//Proc. Tenth IEEE International Conference on Computer Vision. [S.l.]:IEEE Press, 2005:604-610.
  • 7LI Feifei, PERONA P. A bayesian hierarchical model for learning natural scene categories[EB/OL].[2009-05-05].http://vision.stanford. edu/documents/Fei-FeiPerona2005.pdf.
  • 8BOSCH A, ZISSERMAN A, MUNOZ X. Scene elassiffication via plsa[C]//Proc. 9th European Conference on Computer Vision. [S.l.]: Springer Berlin, 2006:517-530.
  • 9WINN J, CRIMINISI A, MINKA T. Object categorization by learned universal visual dictionary [EB/OL]. [2009 -05 -05].http :// johnwinn.org/Publications/papers/Winn_Criminisi_Minka VisualDictio nary_ICCV2005.pdf.
  • 10HOFMANN T. Unsupervised learning by probabilistic latent semantic analysis[J]. Machine Learning, 2004,4( 1 ) : 177-196.

共引文献49

同被引文献12

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部