期刊文献+

计算机视觉快速开发框架的研究与应用

Computer Vision Research and Application of Rapid Development Framework
下载PDF
导出
摘要 在计算机视觉分析应用项目中,常采用多种算法进行实现。在特定的环境下,如何找出其最优路径,往往需要通过大量的对比实验。而应用场景每变化一次,需要进行多次重复实验,不但延长了开发时间,同时也增加了开发成本。计算机视觉快速开发框架从实际应用工程的角度出发,将视觉技术的核心算法从底层研究中剥离,通过扁平化、模块化、一体化的处理、任意组合以及对数据流的合理配置,使应用项目中的开发人员各司其职,分工明确,提高了开发结果的复用性,缩短了开发时间,提高了开发效率。 In computer visual analysis application projects,often using a variety of algorithms to achieve.In certain circumstances,how to find the optimal path,often required by a large number of comparative experiments.Once every change in the applica tion scenario,the need for repeated experiments,not only to extend the development time and development costs also increased.Computer vision rapid development framework from the point of view of the practical application of engineering,visual technol ogy core algorithm is stripped from the underlying research through the flat,modular,integrated processing,in any combination,as well as the rational allocation of the data stream,so that the application project the developers to carry out their duties,a clear division of labor,improve the reusability of the results of the development,shorten the development time and improve develop ment efficiency.
作者 王迅
出处 《电脑知识与技术(过刊)》 2012年第10X期7084-7087,共4页 Computer Knowledge and Technology
关键词 计算机视觉 快速开发 框架 模块化 模块耦合 底层剥离 computer vision rapid development framework modular modules coupled layer stripping
  • 相关文献

参考文献3

二级参考文献22

  • 1柳朝阳,李叔梁.压入区段端点的区域填充扫描线算法[J].计算机辅助设计与图形学学报,1996,8(6):415-419. 被引量:22
  • 2王兆仲,周付根,刘志芳,杨建峰.一种高精度的图像匹配算法[J].红外与激光工程,2006,35(6):751-755. 被引量:9
  • 3Rogers D F.Procedure Elements for Computer Graphics[M].New York:Mc Graw Hill,1985.
  • 4MORAVEC H.Rover visual obstacle avoidance[C]//International Joint Conference on Artificial Intelligence,1981:785-790.
  • 5HARRIS C,STEPHENS M.Acombined corner and edge detector[C]//Fourth Alvey Vision Conference,1988:147-151.
  • 6SCHMID C,MOHR R.Local grayvalue invariants for image retrieval[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1997,19(5):530-534.
  • 7LOWE D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110
  • 8LOWE D G.Object recognition from local scale-invariant features[C]//International Conference on Computer Vision,1999:1150-1157
  • 9STEPHEN S,LOWE D G,LITTLE J J.Vision-based global localization and mapping for mobile robots[J].IEEE Transactions on Robotics,2005,21(3):364-375.
  • 10HELMER S,LOWE D G.Object recognition with many local features[C]//Workshop on Generative Model Based Vision 2004(GMBV,2004.

共引文献136

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部