期刊文献+

主元分析在设备状态监控中的故障检测效率探究

PCA in Equipment Condition Monitoring Fault Detection Efficiency to Explore
下载PDF
导出
摘要 采用大型设备正常运行的传感器数据,通过基于多元统计的主元分析方法建立训练矩阵,利用预测误差进行故障分析工作。不同程度的故障,来分析主元分析方法的检测效率可行性。结果表明,主元分析方法分析故障检测明显,不同传感器的不同故障会对故障诊断存在一定的差异,可行性非常高。 The use of large equipment uptime sensor data through PCA based on multivariate statistical analysis method to establish training matrix, using the prediction error for fault analysis. Varying degrees of failure, principal component analysis method to analyze the efficiency of detecting viability. The results showed that the main element method analysis of fault detection significantly, different sensors be different faults Fault diagnosis there are some differences, feasibility is very high.
作者 张琳
出处 《电脑知识与技术》 2013年第2X期1340-1342,共3页 Computer Knowledge and Technology
关键词 故障检测 主元分析 检测可行性 Fault detection PCA Feasibility testing
  • 相关文献

参考文献10

  • 1郭金玉.动态主元分析方法的研究及应用[J].沈阳化工学院学报,2004,18(1):30-32. 被引量:4
  • 2陈耀,王文海,孙优贤.基于动态主元分析的统计过程监视[J].化工学报,2000,51(5):666-670. 被引量:23
  • 3Dae Sung Lee,Jong Moon Park,Peter A. Vanrolleghem.Adaptive multiscale principal component analysis for on-line monitoring of a sequencing batch reactor[J].Journal of Biotechnology.2004(2)
  • 4Ricardo Dunia,S. Joe Qin.Joint diagnosis of process and sensor faults using principal component analysis[J].Control Engineering Practice.1998(4)
  • 5Jackson J E.A User’s Guide to Principal Components[]..1991
  • 6Dunia R,Qin S J.Subspace approach to multidimensional fault identification and reconstruction[].American Institute of Chemical Engineers Journal.1998
  • 7Frank P M.Fault Diagnosis in Dynamic System Using Analytical and Knowledge-Based Redundancy-A Survey and Some New Results[].Automatica.1990
  • 8Jackson JE.Principal components and factor analysis: part I-principal components[].Journal of Environmental Quality.1980
  • 9Jackson J E,Mudholkar G S.Control procedures for residuals associated with principal Component Analysis[].Technometrics.1979
  • 10Nomikos P,MacGregor J F.Multivariate SPC charts for monitoring batch processes[].Technometrics.1995

二级参考文献7

  • 1[1]Ku W, Storer R H, Georgakis C. Disturbance Detection and Isolation by Dynamic Principal Component Analysis[J]. Chemometrics and Intelligent Laboratory System, 1995,30:179-196.
  • 2[2]Russell Evan L, Chiang Leo H, Braatz Richard D. Fault Detection in Industrial Processes Using Canonical Variate Analysis and Dynamic Principal Component Analysis[J]. Chemometrics and Intelligent Laboratory System, 2000,51:81-93.
  • 3[3]Lin Weilu, Qian Yu, Li Xiuxi. Nonlinear Dynamic Principal Component Analysis for On-line Process Monitoring and Diagnosis[J]. Comp.Chem.Engng, 2000,24:423-429.
  • 4[4]Downs, J J, Vogel, E F. A Plant-Wide Industrial Process Control Problem[J]. Comp.Chem.Engng, 1993,17(3):245-255.
  • 5Zhang J,Chem Eng J,1997年,67卷,3期,181页
  • 6方开泰,实用多元统计分析,1989年
  • 7杨位钦,时间序列分析与动态数据建模,1988年

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部