期刊文献+

基于几何特征与深度数据的三维人脸识别 被引量:2

3D Face Recognition Based on Geometric Features and Range Images
下载PDF
导出
摘要 提出一种基于三维点云数据多特征融合的人脸识别方法。利用深度信息提取人脸中分轮廓线和鼻尖横切轮廓线;采用曲率分析的方法定位出人脸关键点,针对鼻子等人脸刚性区域,选取并计算了4类(包括曲率、距离、体积和角度)共13维的特征向量作为三维几何特征。深度图特征采用结合LBP与Fisherface的方法进行提取与识别。在3DFACE-XMU和ZJU-3DFED数据库上比较了该方法与PCA、LBP等单一方法的识别性能,识别效果有比较明显的提升。 This paper proposes a face recognition method based on fusing features from 3D face point cloud.The central vertical profile and the nasal tip transverse profile are extracted by the depth information.Calculate the curvature value of the points on the profiles and locate the feature points.For the rigid region of face such as nose,the algorithm calculates four types of geometric features,13 dimensional feature vectors in all,including curvature,distance,volume and angle.Combines Local Binary Pattern(LBP) with Fisherface method to extract the depth features.The experimental results on 3DFACE-XMU and ZJU-3DFED show that the proposed method is more effective in face recognition with compare to the single module method such as PCA and LBP.
出处 《电脑知识与技术(过刊)》 2013年第3X期1864-1868,共5页 Computer Knowledge and Technology
关键词 三维人脸识别 几何特征 深度图像 LBP算子 FISHERFACE 3D face recognition geometric features range images local binary pattern(LBP) Fisherface method
  • 相关文献

参考文献5

二级参考文献21

  • 1古红英,潘红,吴飞,庄越挺,潘云鹤.虹膜自相似性识别方法研究[J].计算机辅助设计与图形学学报,2004,16(7):973-977. 被引量:7
  • 2田捷,陈新建,张阳阳,杨鑫,何余良,李亮,谢卫华,郑志鹏.指纹识别技术的新进展[J].自然科学进展,2006,16(4):400-408. 被引量:39
  • 3Bowyer K W, Flynn R A Survey of Approaches and Challenges in 3D and Multi-modal 3D+2D Face Recognition[J]. Computer Vision and Image Understanding, 2006, 101(1): 1-15.
  • 4Ahonen T, Pietikainen M. Face Recognition with Local Binary Patterns[C]//Proc. of European Conference on Computer Vision. Berlin, Germany: Springer, 2004: 469-481.
  • 5Wang Jiangang, Lira E T, Chen Xiang, et al. Real-time Stereo Face Recognition by Fusing Appearance and Depth Fisherfaces[J]. Journal of VLSI Signal Processing, 2007, 49(3): 409-423.
  • 6Belhumeur P, Kriegman D. Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720.
  • 7Phillips P J, Scruggs T. Overview of the Face Recognition Grand Challenge[C]//Proc. of 1EEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA: [s. n.], 2005: 947-954.
  • 8孙哲南,谭铁牛.生物特征识别技术的研究现状和发展趋势[C].中国计算机科学技术发展报告,2005,北京:清华大学出版社,2006:215-235.
  • 9Zhao Wenyi, Chellappa R, Phillips J, et al. Face recognition: a literature survey [J]. ACM Computing Surveys, 2003, 35(4) : 399-458
  • 10Bowyer Kevin W, Chang Kyong, Flynn Patrick. A survey of approaches and challenges in 3D and multi-modal 3D + 2D face recognition [J]. Computer Vision and Image Understanding, 2006, 101(1): 1-15

共引文献21

同被引文献21

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部