期刊文献+

引力势能聚类算法

Gravitational Potential Energy Clusting Algorithm
下载PDF
导出
摘要 总结密度聚类算法存在的共性问题,即聚类之前的参数设定困难,据此提出密度聚类算法的改进目标。模拟万有引力势能的物理模型,结合核密度估计的概念,构建引力势能影响函数与引力势能密度函数,从而创造引力势能聚类算法,该算法能够克服聚类算法中的参数设定困难。详细介绍了该算法的基本原理、参数设定、聚类评判依据,算法步骤,并通过实际应用案例展示该算法在聚类分析和异常分析中的作用。 Summarized the common problem of the density-based clustering algorithm,which is the parameter settings before clustering,proposed to the improvement goals of density clustering algorithm.By simulating the physical model of Gravitational Potential Energy(GPE),combined with the concept of Kernel Density Estimate,created GPE Affect Function and GPE Density Function,thereby build the GPE Clustering Algorithm(GPECA),GPECA is able to overcome the problem of parameter set tings.Described theory,parameter settings,cluster determinations and the steps of GPECA.Demonstrated its applications in clus ter analysis and anomaly analysis through practical application cases.
作者 孙志明
出处 《电脑知识与技术(过刊)》 2013年第3X期1889-1893,1905,共6页 Computer Knowledge and Technology
关键词 聚类 密度 引力势能 参数设定 异常分析 clustering density gravitational potential energy parameter setting anomaly analysis
  • 相关文献

参考文献9

  • 1余小高,余小鹏.基于距离和密度的无监督聚类算法的研究[J].计算机应用与软件,2010,27(7):122-125. 被引量:5
  • 2数据仓库与数据挖掘技术[M]. 电子工业出版社, 2002
  • 3SOMAN K P,DIWAKAR S,AJAY V.In sight into data mining theoryand practice[]..2006
  • 4Ronald Lane Reese.University Physics[]..2002
  • 5Ian H Witten,Frank E.Data Mining:Practical Machine Learning Tools and Techniques[]..2011
  • 6Breunig M M,Kriegel H P,Ng R T,Sander J.LOF:Identifying Density-based Local Outliers[].ACM SIGMOD Record.
  • 7Terrell G R,Scott D t.Variable Kernel Density Estimation[].The Annals of Statistics.1992
  • 8Park H S,Jun C H.A simple and fast algorithm for K-medoids clustering[].Expert Systems With Applications.2009
  • 9Ankerst M,Breunig M,Kriegel H P,et al.OPTICS: Ordering points to identity the clustering structure[].Proceedings of the ACM-SIGMOD InternationalConference on Management of Data(DIGMOD’).1999

二级参考文献10

  • 1Alexander Hinneburg,Daniel A Keim.A General Approach to Clustering in Large Databases with Noise[J].Knowledge and Information Systems,2003(5):387-415.
  • 2XiaoGao Yu,XiaoPeng Yu.The Research on an adaptive k-nearest neighbors classifier[C]//ICMLC.2006:1241-1246.
  • 3Han Jiawei,Micheline Kamber.Data Mining-Concepts and Techniques[M].China Machine Press,Beijing,2004.
  • 4Xiaogao Yu,Xiaopeng Yu.An Adaptive Information Grid Architecture for Recommendation System[C]//APSCC'06.2006:560-565.
  • 5Zhaohui Tang,Jamie Maclennan,Peter Pyungchul Kim.Building Data Mining Solutions with OLE DB for DM and XML for Analysis[J].SIGMOD Record,2005,34(2):3-5.
  • 6Badrul Sarwar,George Karypis,Joseph Konstan.Item-based Collaborative Filtering Recommendation Algorithms[J].WWW10,2001,5:1-5.
  • 7Robin B.Hybrid recommender system.survey and experiments[J].User Modeling and User Adapted Interaction,2002,12(4):331-370.
  • 8Xiaogao Yu,Xiaopeng Yu.A Knowledge-Based Approach for Semantic Service Composition[C]//IMACS.2006:1814-1821.
  • 9Biggs,Maggie.E-business dynamics will lead savvy CTOs to intelligent business process integration[J].InfoWorld,2000,22(20):76.
  • 10吕曦,王化文.Web Service的架构与协议[J].计算机应用,2002,22(12):62-65. 被引量:59

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部