期刊文献+

基于模糊域的图像增强改进算法研究 被引量:2

An Improved Image Enhancement Algorithm Research Based on the Fuzzy Domain
下载PDF
导出
摘要 基于模糊集理论的图像增强算法会丢掉部分的边缘细节,针对这一不足,该文改进了算法,最大程度上保留了低灰度值部分。首先构建一个新的隶属函数,实现了图像空域到模糊域之间的转换;在模糊域中采用非线性变换和递归调用对图像进行了增强,最后再通过逆模糊化转换到空域,得到新的灰度值。仿真结果表明,改进的图像增强算法克服了丢失部分细节的不足,提高了图像质量。 The image enhancement algorithm based on fuzzy set theory will lose part of the edge details. The algorithm is improved in this paper, and the low grey value is retained in this paper. First, a new membership function is build, and the transformation is realized between airspace to fuzzy domain; second, the image is enhanced by nonlinear transformation and recursive; finally, the new grey value is obtained by inverse transformation. The simulation results show that the improved image enhancement algorithm retains the details, and the quality of the image is improved.
作者 李登辉
出处 《电脑知识与技术》 2014年第2X期1282-1284,共3页 Computer Knowledge and Technology
基金 国家自然科学基金资助项目(60802018) 广西壮族自治区教育厅项目(2012JGA240)
关键词 模糊集 图像增强 模糊算法 fuzzy theory image enhancement fuzzy algorithm
  • 相关文献

参考文献1

二级参考文献11

  • 1Li Chao-shun,Zhou Jian-zhong,and Li Qing-qing.A fuzzy clustering algorithm based on mutative scale chaos optimization.Advances in Neural Networks.ISNN 2008,Berlin/Heidelberg:Springer.2008,5264:259-267.
  • 2Runkler T A and Katz C.Fuzzy clustering by particle swarm optimization.Proceedings of 2006 IEEE International Conference on Fuzzy Systems.Vancouver,BC,2006:601-608.
  • 3Chuang Keh-shih,Tzeng Hong-long,and Chen Sharon.Fuzzy c-means clustering with spatial information for image segmentation.Computerized Medical Imaging and Graphics.2006,30(1):9-15.
  • 4Cai Wei-ling,Chen Song-can,and Zhang Dao-qiang.Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation.Pattern Recognition,2007,40(3):825-838.
  • 5Pal N R and Bezdek J C.On cluster validity for the Fuzzy c-means Model.1EEE Transactions on Fuzzy Systems.1995,3(3):370-378.
  • 6Kamber M and Han Jia-wei.Data Mining:Concepts and Techniques.2rd edition.Singapore:Elsevier Press.2005:295-300.
  • 7Breunig M M,Kriegel Hans-peter,and Raymond T N,et al..LOF:Identifying density-based local outliers.Proceedings of ACM SIGMOD International Conference on Management of Data,Dallas,Texas:ACM Press.2000,29:93-104.
  • 8Cao Hui,Si Gang-quan,Zhu Wen-zhi,and Zhang Yan-bin.Enhancing effectiveness of deusity-based outlier mining.International Symposiums on Information processing,Moscow,May 23-25,2008.
  • 9Ghoting A,Parthasarathy S,and Otey M E.Fast miniug of distance-based outliers in high-dimensional dataset.Data Mining Knowledge Discovery,2008,16(3):349-364.
  • 10Weng Xiao-qing and Shen Jun-yi.Detecting outlier samples in multivariate time series dataset.Knowledge-Based Systems,2008,21(8):807-812.

共引文献10

同被引文献18

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部