期刊文献+

MapReduce在Hadoop平台下作业调度算法的改进和实现 被引量:1

The Improvement and Implementation of Job Scheduling Algorithm of Hadoop in MapReduce
下载PDF
导出
摘要 该文在Hadoop实现的MapReduce架构基础上,分析了现有的三种作业调度算法,针对当前算法没有考虑服务器负载状况和数据本地性差的缺点,提出了基于可变长度队列的公平调度算法(FSVQ),该算法分析了空闲节点率,并通过采取等待的办法满足考虑数据本地性。实验证明该算法可增加服务器集群的工作效率,减少网络延迟,具有实际的应用意义。 Based on the MapReduce framework achieved by Hadoop,this article has a detailed analysis of the existing three job scheduling algorithm, For these three algorithms does not consider the load conditions of server cluster and poor data locality, this paper presents the FSVQ algorithm which analyze the number of the arrival of idle nodes in certain time,it is also meet the data locality by waiting approach.The results prove that the algorithm can increase the efficiency of server clusters and reduce network latency, with practical application significance by test.
作者 解慧娟
出处 《电脑知识与技术(过刊)》 2014年第5X期3206-3208,3211,共4页 Computer Knowledge and Technology
关键词 云计算 MAPREDUCE HADOOP 调度算法 负载 数据本地性 cloud computing MapReduce Hadoop scheduling algorithm load data locality
  • 相关文献

参考文献1

二级参考文献10

  • 1Vaquero L M, Rodero-Merino L, Caceres J, et al. A Break in the Clouds: Towards a Cloud DefinitionD]. ACM SIGCOMM Computer Communication Review, 2009, 39 ( 1 ) : 50- 55.
  • 2Bryant R E. Data-Intensive Supercomputing: the Case for DISC[R]. CMU Technical Report CMU-CS-07-128, Department of Computer Science, Carnegie Mellon University, 2007.
  • 3Dean J, Ghemawat S. MapReduce: Simplied Data Processing on Large Clusters[C]//Proc of OSDI '04,2004 : 137-150.
  • 4Colbyranger, Raghuraman R, Penmetsa A. Evaluating MapReduce for Multi-Core and Multiprocessor Systems[C]//Proc of the IEEE 13th Int'l Syrup on High Performance Computer Architecture, 2007 : 13-24.
  • 5Kruijf M D, Sankaralingam K. MapReduce for the Cell B. E. Architecture[-R]. Technical Report CS-TR-2007-1625, University of Wisconsin Computer Sciences University of Wisconsin, 2007.
  • 6He B S, Fang W B, Luo Q, et al. Mars: A MapReduce Framework on Graphics Processors[C]//Proc of the 17th Int'l Conf on Parallel Architectures and Compilation Techniques, 2008 : 260-269.
  • 7Apache Hadoop. Hadoop [EB/OL]. [2009-03-06]. http://hadoop, apache, org/.
  • 8Yahoo. Yahoo! Hadoop Tutorial [EB/OL]. [2009-02-27]. http:// public, yahoo, com/gogate/hadoop-tutorial/start-tutorial, html.
  • 9Ghemawat S, Gogioff H, Leung P T. The Google File System[C]//Proc of the 19th ACM Syrnp on Operating Systems Principles, 2003 : 29-43.
  • 10Zaharia M, Konwinski A, Joseph A D. Improving MapReduce Performance in Heterogeneous Environments [C]//Proc of the 8th Usenix Syrup on Operating Systems Design and Implementation, 2008 : 29-42.

共引文献20

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部