期刊文献+

中文在线评论中产品特征抽取研究

Research of Product Features Extraction Method in Chinese Online Comments
下载PDF
导出
摘要 在线评论中特征抽取是产品意见挖掘的基础,直接影响到最终挖掘结果的准确性。针对现有特征抽取方法的准确率和召回率偏低问题,该文通过设计词性序列模板产生候选特征集,利用PMI-IR方法进行筛选,最终获得产品特征集。实验结果表明,该方法取得较好效果。 As a foundation of further analysis in in Chinese Online comments, features extraction influences the precision of the opinion mining results. Aiming at solving problems of relatively low precision, rate of coverage when using existing product features method, this paper designs part of speech sequence templates to obtain product features candidates, then utilizes PMI-IR method to filter product features candidates and obtain product features set. Experimental results show that this method is effective.
作者 胡龙茂
出处 《电脑知识与技术》 2014年第11X期8076-8078,共3页 Computer Knowledge and Technology
关键词 在线评论 特征抽取 序列模板 PMI online comments feature extraction sequence template PMI
  • 相关文献

参考文献1

二级参考文献27

  • 1IRESEARCH.2012-2013年中国网络购物行业年度监测报告简版[EB/OL].[2013-09-01].http://www.iresearch.com.cn/Report/2007.html.
  • 2SOTIRIADIS M D,VAN ZYL C.Electronic word-of-mouth and online reviews in tourism services:the use of twitter by tourists[J].Electronic Commerce Research,2013,13 (1):103-124.
  • 3BALAHUR A,HERMIDA J M,MONTOYO A.Detecting implicit expressions of emotion in text:a comparative analysis[J].Decision Support Systems,2012,53(4):742-753.
  • 4PINHEIRO R H W,CAVALCANTI G D C,CORREA R F,et al.A global-ranking local feature selection method for text categorization[J].Expert Systems with Applications,2012,39(17):12851-12857.
  • 5DING Xiaowen,LIU Bing,YU P S.A holistic lexicon-based approach to opinion mining[C] //Proceedings of the International Conference on Web Search and Web Data Mining.New York,N.Y.,USA:ACM,2008:231-240.
  • 6MONTOYO A,MARTINEZ-BARCO P,BALAHUR A.Subjectivity and sentiment analysis:an overview of the current state of the area and envisaged developments[J].Decision Support Systems,2012,53(4):675-679.
  • 7CARENINI G,CHEUNG J C K,PAULS A.Multi-document summarization of evaluative text[J].Computational Intelligence,DOI:10.1111/j.1467-8640.2012.00417.x.
  • 8BLAIR-GOLDENSOHN S,HANNAN K,MCDONALD R,et al.Building a sentiment summarizer for local service reviews[C] //Proceedings of International Workshop on NLP Challenges in the Information Explosion Era.New York,N.Y.,USA:ACM,2008.
  • 9ZHUANG Li,JING Feng,ZHU Xiaoyan.Movie review mining and summarization[C] //Proceedings of the 15th ACM International Conference on Information and Knowledge Management.New York,N.Y.,USA:ACM,2006:43-50.
  • 10JIN Wei,HO H H.A novel lexicalized HMM-based learning framework for web opinion mining[C] //Proceedings of the 26th Annual International Conference on Machine Learning.New York,N.Y.,USA:ACM,2009:465-472.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部