期刊文献+

基于改进的FP-Growth算法提取客户关系图

A New Method to Extract Customer Relational Graph Based on Modified FP-Growth Algorithm
下载PDF
导出
摘要 利用客户关系图可以很清晰地看出企业与客户之间的各类关系,便于企业决策者采取针对性的措施来改善客户关系。该文提出了一种基于改进的FP-Growth算法进行客户关系图提取的方法,通过最小支持度寻找到所有的频繁项集,然后结合最小置信度,筛选出所需要的关联规则来提高算法的效率。本方法已应用于浙江中烟CRM系统,结果证明该改进算法有比较好的效果。 Customer relationships can be clearly seen in customer relationship graph,thus business decision-makers can take specific measures to facilitate customer relationships.This paper presents an improved algorithm based on FP-Growth algorithm to extract customer relationship graph.We find all frequent itemsets through minimum support,then filter out the desired association rules integrated with the minimum confidence,which can improve the efficiency of the algorithm considerably.This method has been applied to Zhejiang Tobacco CRM system,and the results show that the improved algorithm is very effective.
出处 《电脑知识与技术》 2015年第1X期106-109,共4页 Computer Knowledge and Technology
关键词 客户关系管理 数据挖掘 客户关系图 频繁项集 custom relationship management data mining customer relational graph frequent etem set
  • 相关文献

参考文献4

二级参考文献17

  • 1谢芳芳,章兢,郑剑.基于支持向量机故障诊断方法[J].传感器世界,2006,12(4):42-44. 被引量:8
  • 2谈克林,孙志挥.一种FP树的并行挖掘算法[J].计算机工程与应用,2006,42(13):155-157. 被引量:10
  • 3Agrawal R,Imielinski T,Swami A.Mining association rules between sets of items in large databases[C]//Proceedings of the ACM SIG- MOD International Conference Management of Date,Washington,1993:207-216.
  • 4Ha n J,Kamber M.Data mining:Concepts and techniques[M].Beijing: High Education Press, 2001.
  • 5Agrawal R,Imielinski T,Swami A.Mining association rules between sets of items in large databases[C]//Proc 1993 ACM-SIGMOD Int Conf Management of Data, Washington, DC, May 1993 : 207-216.
  • 6Savasere A,Omiecinski E,Navathe S.An efficient algorithm for mining association rules in large databases[C]//Proc of the 21st VLDB Conference, Zurich, Switzerland, 1995 : 432-443.
  • 7Agrawal R C,Agarwal C,Prasad V V V.A tree projection algorithm for generation of frequent itemscts[J].Journal of Parallel and Distributed Computing:Special Issue on High Performance Data Mining, 2000.
  • 8Han J W,Pei J,Yin Y W,et al.Mining frequent patterns without candidate generation[C]//Proc ACM-SIGMOD Int Conf on Management of Data(SIGMOD'00),DalIas,TX,2000:1-12.
  • 9Han J,Pei J,Yin Y,et al.Mining frequent patterns without candidate generation : A frequent-pattern tree approach[J].Data Mining and Knowledge Discovery, 2004,8 : 53-87.
  • 10盂凡强,等.CRM行动手册-策略、技术和实现[M].北京:机械工业出版社,2002.36.

共引文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部