期刊文献+

基于局部稀疏表示的多示例学习跟踪方法研究

Multiple Instance Learning Tracking Method with Local Sparse Representation
下载PDF
导出
摘要 针对目标纹理变化、光照和位置变化较大时,跟踪不稳定、易丢失目标的问题,提出通过多示例学习的训练数据生成局部稀疏编码,建立对象的外观模型。首先,目标对象的局部图像块由过完备字典结合稀疏编码表示;其次,分类器学习稀疏编码进而识别背景中的目标;最后,将训练分类器得到的结果输入粒子滤波框架,进而预测目标状态随时间的变化。此外,为了减少字典更新和分类器累积误差形成的视觉漂移,采用弱分类器结合强分类器进行目标跟踪。 When objects undergo large pose change, illumination variation or partial occlusion, most existed visual tracking algo-rithms tend to drift away from targets and even fail in tracking them. To address this issue, in this study, the authors propose an on-line algorithm by combining multiple instance learning(MIL) and local sparse representation for tracking an object. The key idea inour method is to model the appearance of an object by local sparse codes that can be formed as training data for the MIL frame-work. First, local image patches of a target object are represented as sparse codes with an over complete dictionary. Then MILlearns the sparse codes by a classifier to discriminate the target from the background. Finally, results from the trained classifier areinput into a particle filter framework to sequentially estimate the target state over time in visual tracking. In addition, to decreasethe visual drift because of the accumulative errors when updating the dictionary and classifier, a two-step object tracking methodcombining a weak classifier with a strong classifier is proposed.
作者 赵丽军
出处 《电脑知识与技术(过刊)》 2015年第2X期216-218,共3页 Computer Knowledge and Technology
基金 华东交通大学校立科研基金资助(14RJ03)
关键词 局部稀疏表示 多示例学习 分类器 local sparse representation MIL(multiple instance learning) classifier
  • 相关文献

参考文献9

  • 1Wang Q,Chen F,Xu W, et al.Online Discriminative Object Tracking with Local Sparse Representation. IEEE workshop on applications of computer vision (WACV) . 2012
  • 2Xie C,Tan J,Chen P,et al.Multiple Instance Learning Tracking Method with Local Sparse Representation. IET Computer Vision . 2013
  • 3Wang J,Chen X,Gao W.Online selecting discriminative tracking features using particle filter. Proc.CVPR’05 . 2005
  • 4B.Babenko,M.H.Yang,S.Belongie.Visual Tracking with Online Multiple Instance Learn-ing. Proc. IEEE Conf. Computer Vision and Pattern Recognition . 2009
  • 5韩亚颖,王元全.基于压缩感知的在线多示例学习目标追踪[J].空军工程大学学报(自然科学版),2014,15(5):71-75. 被引量:1
  • 6向金海,樊恒,徐俊,邓君丽.基于局部稀疏表示的目标跟踪[J].华中科技大学学报(自然科学版),2014,42(7):92-95. 被引量:7
  • 7Boris Babenko,Ming-Hsuan Yang,Serge Belongie.Robust Object Tracking with Online Multiple Instance Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2011
  • 8陈东成,朱明,高文,孙宏海,杨文波.在线加权多示例学习实时目标跟踪[J].光学精密工程,2014,22(6):1661-1667. 被引量:29
  • 9Matthews I,Ishikawa T,Baker S.The template update problem. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2004

二级参考文献35

  • 1ZHOU Q H, LU H CH, YANG M H. Online multiple support instance tracking[J]. IEEE International Conference on Automatic Face and Gesture Recognition and Workshops, 2011,545-552.
  • 2DIETTERICH T G, LATHROP R H, LOZANO-PREZ T. Solving the multiple-instance problem with axis-parallel rectangles[J]. Artificial Intelligence, 1997, 89(1-2): 31-71.
  • 3VIOLA P, PLATT J C, ZHANG C. Multiple instance boosting for object detection[J]. Proc. Neural Information Processing systems, 2005,1417-1426.
  • 4BABENKO B, YANG M, BELONGIE S, Robust object tracking with online multiple instance learning[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33:1619-1632.
  • 5ZEISL B, LEISTNER C, SAFFARI A, et al.. On-line semi-supervised multiple-instance learning boosting. 2010 IEEE Conference on Computer Vision and Pattern Recognition,2010:1879.
  • 6PAPAGEORGIOU C P, OREN M, POGGIO T. A general framework for object detection [C].Sixth International Conference on Computer Vision, 1998:555-562.
  • 7OZA N. Online Ensemble Learning [D]. Berkeley:University of California, 2001.
  • 8MASON L, BAXTER J, BARTLETT P, et al.. Functional Gradient Techniques for Combining Hypotheses [M]. Cambridge: MIT Press, 2000,221-247.
  • 9KALAL Z, MATAS J, MILKOLAJCZYK K. Online learning of robust object detectors during unstable tracking [C]. OLCV, 2009.
  • 10KALAL Z, MILKOLAJCZYK K, MATAS J. Tracking-learning-detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012,1409-1422.

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部