摘要
随着无线传感器监控网络系统的广泛使用,作为监控系统重要组成部分,后台监控软件单纯地作为可视化工具已经不能满足使用需求。"智能化"成为了后台监控软件所要满足的重要需求,针对这一需求,本文设计并实现了采用"层次化"预警机制的后台监控软件;并结合机器学习模型,设计了基于隐马尔可夫预测模型(HMM)的监控数据预测方法。为了验证本文所设计的预测方法的准确性,结合从柑橘种植园中采集到的真实的监控数据,与其他几种流行的机器学习预测模型进行了一系列的对比。对比试验的结果表明,通过本文所设计的预测方法,能够实现对监控数据在短期过程与长期过程中的可靠预测,从而改善了后台监控软件的智能化水平。
Sensor Network-Based monitor systems are widely applied in multiple areas currently. Background monitor software,which is definitely an important part of monitor system, is no longer a simple tool for visualization.Intelligent becomes a primary de-mand that background monitor softwares need to meet.To satisfy this demand, this paper designs and implements a backgroundmonitor software firstly, in which a hierarchical alarming method involved. Then a prediction solution of monitor data based on Hidden Markov Model(HMM) is introduced.For justifying the performance of the proposed prediction solution, a series of contrast experiments between the proposed solution and other machine learning modelsare conducted. The contrast results show that thepre-dictionperformance of proposed prediction solution is better than the other models', no matter in short term prediction or long termprediction, which means the intelligence of background software is effectively improved.
出处
《电脑知识与技术》
2015年第3X期205-209,共5页
Computer Knowledge and Technology