期刊文献+

改进的视频车辆背景差分检测

The Video Vehicle Detection Based on Improved Background Difference Method
下载PDF
导出
摘要 实时交通信息检测在智能交通系统中起着重要的作用,视频车辆检测是交通信息检测的一种重要手段。背景差分算法因其灵活性和准确性,成为基于视频的运动目标实时检测的一种常用方法,传统背景差分算法仅仅强调对二维图像的处理,尤其强调对图像分割和目标跟踪。该文对传统背景差分算法进行了改进,提出一种基于虚拟线框的车辆视频检测算法。该算法核心思想通过在每个车道设置两个虚拟线框来检测交通流参数,虚拟线框的输出信号源于背景差分。该方法只需对虚拟线框内的图像区域进行处理,从而并且避开了在视频图像中进行复杂的车辆特征提取与跟踪,减少了运算量,降低了运算负荷。经测试算法的处理速度为25帧/秒,车辆识别精度约为88%。 The collection of real-time traffic data plays a critical role in the intelligent transport system, and video-based detectionis an important part in traveler information systems. Background difference method has become common means in real-time mo-tion detection because of its flexibility and veracity. Traditional background difference method is mainly based on 2-dimensionalimage processing, especially on image division and vehicle tracking. Improved the traditional background difference method, an al-gorithm of vehicle detection which is based on virtual frame is proposed in the paper. The main idea of this algorithm is based onthe lane, each lane can have two virtual-frame to detect its traffic parameters. Each virtual-frame's output signals mainly derivefrom the background difference. This method is only processing small area within virtual-frame and avoiding vehicle tracking in 2-dimensional image, hence the time cost of calculation and the computation burthen is reduced. The experiment tells us that thespeed of the algorithm is 25 fps, the precision is about 88%.
出处 《电脑知识与技术》 2015年第7X期144-146,共3页 Computer Knowledge and Technology
关键词 视频车辆检测 背景差分 虚拟线框 video vehicle detection background difference method virtual frame
  • 相关文献

参考文献8

  • 1郑江滨,张艳宁,冯大淦,赵荣椿.视频监视中运动目标的检测与跟踪算法[J].系统工程与电子技术,2002,24(10):34-37. 被引量:31
  • 2M Fathy,M Y Siyal.A window-based image processing technique for quantitative and qualitative analysis of road traffic parameters. IEEE Transactions on Vehicular Technology . 1998
  • 3Yoshida,T.Background Differencing Technique for Image Segmentation Based on the Status of Reference Pixels. International Conference on Image Processing ICIP‘ 04 . 2004
  • 4王春波,张卫东,张文渊,许晓鸣.复杂交通环境中车辆的视觉检测[J].上海交通大学学报,2000,34(12):1680-1682. 被引量:17
  • 5Thakoor N,Gao J.Automatic video object shape extraction and its classification with camera in motion. IEEE International Conference on Image Processing . 2005
  • 6Bevilacqua A,Vaccari,S.Real time detection of stopped ve-hicles in traffic scenes. IEEE Conference on Advanced Vid-eo and Signal Based Surveillance . 2007
  • 7Siyal M Y.A novel multiprocessor system for road traffic appli-cations. 2002 IEEE International Conference on IndustrialTechnology . 2002
  • 8杨建国,尹旭全,方丽,李健,王兆安.基于自适应轮廓匹配的视频运动车辆检测和跟踪[J].西安交通大学学报,2005,39(4):351-355. 被引量:16

二级参考文献17

  • 1王春波,张卫东,张文渊,许晓鸣.复杂交通环境中车辆的视觉检测[J].上海交通大学学报,2000,34(12):1680-1682. 被引量:17
  • 2[1]Collins Robert T, Lipton Alan J. Takeo Kanade. Introduction to the Special Section on Video Surveillance[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2000, 22(8): 745-746.
  • 3[2]Lipton A, Fujiyoshi H, Patil R S. Moving Target Classification and Tracking from Real-Time Video[R]. IEEE Proc. on WACV, 1998, 10: 8-14.
  • 4[3]Collins Robert T, Lipton Alan J, Takeo Kanade. Learning Patterns of Activity Using Real-Time Tracking[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence. 2000, 22(8): 747-757.
  • 5[4]Murat Tekalp. Digital Video Processing[M]. Prentice Hall Inc., 1995.
  • 6[1]Lipton A, Fujiyoshi H, Patil R. Moving target classification and tracking from real-time video [C]. IEEE Workshop on Applications of Computer Vision. Princeton:NJ, 1998.8~14.
  • 7[2]Foresti G, Murino V, Regazzoni C. Vehicle recognition and tracking from road image sequences[J]. IEEE Transactions on Vehicular Technology, 1999,48 (1):301~317.
  • 8[3]Kilger M. A shadow handler in a video-based realtime traffic monitoring system [C]. IEEE Workshop Application Computer Vision. CA:1999. 1060~1066.
  • 9[4]Bouthemy P, Lalande P. Recovery of moving object masks in an image sequence using local spatiotemporal contextual information[J]. Optical Engineering. 1993,32(6):1205~1212.
  • 10[5]Dubuisson M P, Jain A K. Contour extraction of moving objects in complex outdoor scenes[J]. International Journal of Computer Vision, 1995,14: 83~ 105.

共引文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部