期刊文献+

一种基于负反馈的协同过滤推荐系统

下载PDF
导出
摘要 近年来,越来越多的用户形成了使用博客的习惯,然而由于网络上充斥着浩如烟海的信息,用户很难用传统的信息检索方式快速地找到自己想要的博文,因此博客推荐系统应运而生,它可以为用户提供个性化的推荐服务,因此有效地解决了"信息过载"与"信息迷航"问题。协同过滤是当今博客推荐系统中应用最成功的推荐方法之一,它利用一组用户已知的偏好信息预测另一组用户未知的偏好。在本篇论文中,首先指出了推荐系统所面临的问题,即只利用用户对物品的显式评分或隐式评分为每个用户产生推荐集,但没有在推荐过程中利用负反馈信息。此外,介绍了推荐系统的概念与应用和两种主要的推荐方法:基于内容的方法和协同过滤方法,并且介绍了每个方法的原理以及与他们相关的算法。随后提出了一种基于负反馈的协同过滤推荐算法,并解释了新提出的推荐系统的逻辑结构。用新浪博客的数据集对新方法进行了评估,实验结果表明,新提出的方法比传统的基于用户的协同过滤方法有更好的表现。
作者 蔡宇辰
机构地区 北京工业大学
出处 《电脑知识与技术(过刊)》 2015年第9X期181-182,198,共3页 Computer Knowledge and Technology
  • 相关文献

参考文献5

  • 1Il Im,Alexander Hars.??Does a one-size recommendation system fit all? the effectiveness of collaborative filtering based recommendation systems across different domains and search modes(J)ACM Transactions on Information Systems (TOIS) . 2007 (1)
  • 2Alejandro Bellogín,Pablo Castells,Iván Cantador.??Neighbor Selection and Weighting in User-Based Collaborative Filtering(J)ACM Transactions on the Web (TWEB) . 2014 (2)
  • 3周军锋,汤显,郭景峰.一种优化的协同过滤推荐算法[J].计算机研究与发展,2004,41(10):1842-1847. 被引量:103
  • 4Gediminas Adomavicius,Alexander Tuzhilin.Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering . 2005
  • 5Peng T C,Chou S T.iTrustU: A Blog Recommender System Based on Multi-faceted Trust andCollaborative Filtering. Proceedings of the2009ACM symposium on Applied Computing . 2009

二级参考文献10

  • 1J Breese, D Hecherman, C Kadie. Empirical analysis of predictive algorithms for collaborative filtering. In: Proc of the 14th Conf on Uncertainty in Artificial Intelligence (UAI98) . San Francisco,CA: Morgan Kaufmann, 1998. 43~52
  • 2B Sarwar, G Karypis, J Konstan, et al. Item-based collaborative filtering recommendation algorithms. In: Proc of the 10th Int'l World Wide Web Conf. New York: ACM Press, 2001. 285~295
  • 3A Dempster, N Laird, D Rubin. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977, 39(1): 1~38
  • 4B Thiesson, C Meek, D Chickering, et al. Learning mixture of DAG models. Microsoft Research, Tech Rep: MSR-TR-97-30,1997
  • 5B Sarwar, G Karypis, J Konstan, et al. Analysis of recommendation algorithms for E-commerce. In: Proc of the 2nd ACM Conf on Electronic Commerce. New York: ACM Press,2000. 158~167
  • 6J Wolf, C Aggarwal, K-L Wu, et al. Horting hatches an egg: A new graph-theoretic approach to collaborative filtering. In: Proc of the 5th ACM SIGKDD Int'l Conf on Knowledge Discovery and Data Mining. New York: ACM Press, 1999. 201~212
  • 7C C Aggarwal. On the effects of dimensionality reduction on high dimensional similarity search. In: Proc of the 20th ACM SIGMOD-SIGACT-SIGART Symp on Principles of Database Systems. New York: ACM Press, 2001. 256~266
  • 8B Kitts, D Freed. Cross-sell: A fast promotion-tunable customeritem recommendation method based on conditionally independent probabilities. In: Proc of ACM SIGKDD2000. New York: ACM Press, 2000. 437~446
  • 9赵亮,胡乃静,张守志.个性化推荐算法设计[J].计算机研究与发展,2002,39(8):986-991. 被引量:140
  • 10邓爱林,朱扬勇,施伯乐.基于项目评分预测的协同过滤推荐算法[J].软件学报,2003,14(9):1621-1628. 被引量:558

共引文献105

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部