期刊文献+

Hadoop平台下森林物联网多环境参数关联研究 被引量:1

Research on Relevance between Multiple Environmental Parameters in Internet of Things for Forest Based on Hadoop
下载PDF
导出
摘要 基于南京某森林TB量级关于无线传感器网络持续记录的森林的大气温度、土壤湿度以及土壤温度的大数据,利用Google公司的Hadoop云计算平台对数据进行分析,进而研究气温、土壤湿度对土壤温度的影响。利用Hadoop平台下的Map Reduce框架对传感器传回的数据进行噪声处理、二次排序等操作,并综合利用MATLAB、SPSS等软件对数据进行综合处理分析,进而研究气温土壤湿度对土壤温度的影响,而土壤温度对植株处于良好的生长状态具有重要现实意义[1]。 The TB level of data about the atmospheric temperature, soil moisture, and soil temperature in Nanjing's forest is measured by Wireless Sensor Networks. Researchers use Google's Hadoop cloud computing platform to analyze these data, and then study the effect of temperature and soil moisture on soil temperature. Researchers use framework of the Map Reduce to carry out the data of the sensor data processing, sorting. In the end, researchers use MATLAB, SPSS and other software to analyze the data, and then to study the effect of temperature and soil moisture on soil temperature, which is considered of strategic importance for plant growth.
出处 《电脑知识与技术》 2015年第10X期200-203,共4页 Computer Knowledge and Technology
基金 国家自然科学基金(31300472) 江苏省大学生实践创新训练计划重点项目(201410298030Z 201510298046Z)
关键词 大数据 云计算 物联网 HADOOP Map Reduce big data cloud computing Internet of Things Hadoop Map Reduce
  • 相关文献

参考文献4

二级参考文献34

  • 1Sims K. IBM introduces ready-to-use cloud computing collaboration services get clients started with cloud computing. 2007. http://www-03.ibm.com/press/us/en/pressrelease/22613.wss
  • 2Boss G, Malladi P, Quan D, Legregni L, Hall H. Cloud computing. IBM White Paper, 2007. http://download.boulder.ibm.com/ ibmdl/pub/software/dw/wes/hipods/Cloud_computing_wp_final_8Oct.pdf
  • 3Zhang YX, Zhou YZ. 4VP+: A novel meta OS approach for streaming programs in ubiquitous computing. In: Proc. of IEEE the 21st Int'l Conf. on Advanced Information Networking and Applications (AINA 2007). Los Alamitos: IEEE Computer Society, 2007. 394-403.
  • 4Zhang YX, Zhou YZ. Transparent Computing: A new paradigm for pervasive computing. In: Ma JH, Jin H, Yang LT, Tsai JJP, eds. Proc. of the 3rd Int'l Conf. on Ubiquitous Intelligence and Computing (UIC 2006). Berlin, Heidelberg: Springer-Verlag, 2006. 1-11.
  • 5Barroso LA, Dean J, Holzle U. Web search for a planet: The Google cluster architecture. IEEE Micro, 2003,23(2):22-28.
  • 6Brin S, Page L. The anatomy of a large-scale hypertextual Web search engine. Computer Networks, 1998,30(1-7): 107-117.
  • 7Ghemawat S, Gobioff H, Leung ST. The Google file system. In: Proc. of the 19th ACM Symp. on Operating Systems Principles. New York: ACM Press, 2003.29-43.
  • 8Dean J, Ghemawat S. MapReduce: Simplified data processing on large clusters. In: Proc. of the 6th Symp. on Operating System Design and Implementation. Berkeley: USENIX Association, 2004. 137-150.
  • 9Burrows M. The chubby lock service for loosely-coupled distributed systems. In: Proc. of the 7th USENIX Symp. on Operating Systems Design and Implementation. Berkeley: USENIX Association, 2006. 335-350.
  • 10Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M, Chandra T, Fikes A, Gruber RE. Bigtable: A distributed storage system for structured data. In: Proc. of the 7th USENIX Symp. on Operating Systems Design and Implementation. Berkeley: USENIX Association, 2006. 205-218.

共引文献1447

同被引文献3

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部